Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Technical and technological aspects of the coal mine closure based on the geomechanical component assessment

Mykhailo Barabash1, Ildar Salieiev1, Hennadii Symanovych2

1LLC “DTEK Energy”, Kyiv, 01032, Ukraine

2Dnipro University of Technology, Dnipro, 49005, Ukraine


Min. miner. depos. 2021, 15(3):7-15


https://doi.org/10.33271/mining15.03.007

Full text (PDF)


      ABSTRACT

      Purpose.Development of a comprehensive methodology for assessing the state of mine workings based on the analysis of their contour displacement patterns when solving the problem of minimizing the risks during the closure of coal mines in Ukraine.

      Methods. Based on an integrated analysis of international and domestic trends when assessing the consequences of mine closure, the main provisions of using the method of instrumental mine observations have been substantiated. When solving the problem, the approaches of regulatory documents are taken into account to identify the geomechanical situation according to two conditions: the structure and strength properties of the lithotypes in the adjacent coal-bearing stratum and the peculiarities of the rheological processes manifestation during the development of its displacements.

      Findings. The geomechanical, technological and hydrogeological factors have been distinguished that are required to take into account when closing the coal mines. Fundamental methodological provisions have been substantiated for the most reliable assessment of the mine workings state, taking into account the long period of their operation. A criterion for making a decision on the decommissioning of mine workings or their further maintenance is presented.

      Originality.A series of generalizing dependences of the mine working contour displacement development has been obtained, which can be divided into four main groups according to the criteria of the structural and strength properties of lithotypes in the adjacent mass, as well as the type of their rheological manifestations: decaying and persistent deformation creep. For each group, using the methods of correlation-dispersive analysis, empirical formulas have been determined for calculating the convergence of the roof and bottom of mine workings, as well as their sides, depending on the geomechanical criterion H/R of the maintenance conditions and the duration t of this period.

      Practical implications.The obtained correlation ratios make it possible to predict the residual section of mine working at any time of its maintenance. They are a geomechanical component of its operational state assessment. The result of this research is the development of a new methodology for assessing the mine working state according to the patterns for predicting its contour displacement.

      Keywords:mine, coal, mine working, displacements, rocks


      REFERENCES

  1. Word Coal. (2020). WCA comments on IEA Energy Technology Perspectives Report. Retrieved from: https://www.worldcoal.com/coal/14092020/wca-comments-on-iea-energy-technology-perspectives-report/
  2. World Energy Outlook 2020. (2020). Retrieved from: https://www.iea.org/reports/world-energy-outlook-2020
  3. Zvit pro stan realizatsii Enerhetychnoi stratehii Ukrainy na period do 2035 roku “Bezpeka, Enerhoefektyvnist, Konkurentospromozhnist” za 2019 rik. Retrieved from: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=245472866
  4. Ministerstvo enerhetyky ta vuhilnoi promyslovosti Ukrainy. (2019). Osnovni pokaznyky rozvytku palyvno-enerhetychnoho kompleksu. Retrieved from: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=245416376
  5. Ugol’naya otrasl’ v Ukraine: Kolichestvo shakht i uroven’ dobychi. (2020). Retrieved from: https://ru.slovoidilo.ua/2020/04/30/infografika/jekonomika/ugolnaya-otrasl-ukraine-kolichestvo-shaxt-i-uroven-dobychi
  6. Igor’ Chumachenko: Ubytochnye shakhty nado prosto zakryvat’, drugogo vykhoda net. (2021). Retrieved from: https://kosatka.media/category/blog/news/igor-chumachenko-ubytoch-nye-shahty-nado-prosto-zakryvat-drugogo-vyhoda-net
  7. OILPOINT. (2021). V dekabre 2020 goda ukrainskie shakhty nedovypolnili plan na 23%. Retrieved from: https://oilpoint.com.ua/v-dekabre-ukraynskye-shaht%d1%8b-nedov%d1%8bpolnyly-plan-na-23/
  8. DTEK. (2020). Dogovor arendy shakht Dobropol’eugol’ prekrashchaetsya po soglasheniyu storon: prisoedinenie shakht k Tsentrenergo garantiruet shakhteram postoyannyy rynok sbyta. (2020). Retrieved from: https://dtek.com/ru/media-center/press/dogovor-arendy-shakht-dobropoleugol-prekraschaetsya-po-soglasheniyu-storon-prisoedinenie-shakht-k-tsentrenergo-garantiruet-shakhteram-postoyannyy-rynok-sbyta/
  9. Iintegrated report 2019. Financial and non-financial results. (2019). Retrieved from: https://dtek.com/en/investors_and_partners/reports/
  10. DTEK Energy’s TPPs operate above the plan of the Ministry of Energy to stabilize the energy system – Ildar Saleev. (2021). Retrieved from: https://energo.dtek.com/en/media-center/press/tes-dtek-energo-rabotayut-vyshe-plana-minenergo-dlya-stabilizatsii-energosistemy--ildar-saleev/
  11. Ugol’naya otrasl’: skol’ko v Ukraine i mire rabotaet shakht. (2020). Retrieved from: https://ru.slovoidilo.ua/2020/08/27/infografika/jekono-mika/ugolnaya-otrasl-skolko-ukraine-i-mire-rabotaet-shaxt
  12. Malashkevych, D., Poimanov, S., Shypunov, S., & Yerisov, M. (2020). Comprehensive assessment of the mined coal quality and mining conditions in the Western Donbas mines. E3S Web of Conferences, (201), 01013. https://doi.org/10.1051/e3sconf/202020101013
  13. Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138.
  14. Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. https://doi.org/10.1051/e3sconf/20186000013
  15. Ayres, R.U., & Walter, J. (1991). The greenhouse effect: damages, costs and abatement. Environmental and Resource Economics, 1(3), 237-270.
  16. Wang, J., Wang, R., Zhu, Y., & Li, J. (2018). Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy, (115), 374-384. https://doi.org/10.1016/j.enpol.2018.01.040
  17. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 169-172. https://doi.org/10.1201/b16354-29
  18. Sorenkov, V.N., Nedoluzhko, T.V., & Begicheva, T.V. (2012). K voprosu likvidatsii shakht Tsentral’nogo rayona Donbassa. Ugol’ Ukrainy, (2), 31-35.
  19. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47. https://doi.org/10.1016/j.jsm.2018.03.004
  20. Instruktsiya po podderzhaniyu gornykh vyrabotok na shakhtakh Zapadnogo Donbassa. (1994). Pavlohrad, Ukraina: Geomekhanika, 95 s.
  21. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, (66), 03001. https://doi.org/10.1051/e3sconf/20186603001
  22. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  23. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 159-163. https://doi.org/10.1201/b16354-28
  24. Zeynullin, A.A., Abeuov, E.A., Demin, V.F., Aliev, S.B., Kaynazarova, A.S., & Kaynazarov, A.S. (2021). Estimation of ways to maintain mining works based on the application of anchor anchoring in the mines of the Karaganda coal basin. Ugol’, (2), 4-9. https://doi.org/10.18796/0041-5790-2021-2-4-9
  25. Skipochka, S. (2019). Conceptual basis of mining intensification by the geomechanical factor. E3S Web of Conferences, (109), 00089. https://doi.org/10.1051/e3sconf/201910900089
  26. Bondarenko, V., Kovalevska, I., Husiev, O., Snihur, V., & Salieiev, I. (2019). Concept of workings reuse with application of resource-saving bolting systems. E3S Web of Conferences, (133), 02001. https://doi.org/10.1051/e3sconf/201913302001
  27. Dychkovskyi, R., Shavarskyi, I., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85-94. https://doi.org/10.33271/mining14.02.085
  28. Kuanyshbekovna, M.M., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  29. Baklashov, I.V. (1988). Deformirovanie i razrushenie porodnykh massivov. Moskva, Rossiya: Nedra, 270 s.
  30. Stavrogin, A.N., & Protosenya, A.G. (1985). Prochnost’ gornykh porod i ustoychivost’ vyrabotok na bol’shikh glubinakh. Moskva, Rossiya: Nedra, 271 s.
  31. Salieiev, I.A., Bondarenko, V.I., Symanovych, H.А., & Kovalevska, I.A. (2021). Development of a methodology for assessing the expediency of mine workings decommissioning based on the geomechanical factor. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu.
  32. Ishchenko, K.S., Krukovskiy, A.P., Krukovskaya, V.V., & Ishchenko, A.K. (2012). Physical and numeral modeling of stressed-deformed state of the rock massif in the working face. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 85-91.
  33. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35
  34. Małkowski, P., Niedbalski, Z., Majcherczyk, T., & Bednarek, Ł. (2020). Underground monitoring as the best way of roadways support design validation in a long time period. Mining of Mineral Deposits, 14(3), 1-14. https://doi.org/10.33271/mining14.03.001
  35. Bondarenko, V., Kovalevska, I. Symanovych, G., Sotskov, V., & Barabash, M. (2018). Geomechanics of interference between the operation modes of mine working support elements at their loading. Mining Science, (25), 219-235. https://doi.org/10.5277/msc182515
  36. Bondarenko, V., Kovalevs’ka, I., Svystun, R., & Cherednichenko, Yu. (2013). Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame-bolt support. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 5-10. https://doi.org/10.1201/b16354-2
  37. Małkowski, P., & Ostrowski, Ł. (2019). Convergence Monitoring as a Basis for Numerical Analysis of Changes of Rock-Mass Quality and Hoek-Brown Failure Criterion Parameters due to Longwall Excavation. Archives of Mining Sciences, 68(1), 93-118. https://doi.org/10.24425/ams.2019.126274
  38. Małkowski, P., & Juszyński, D. (2021). Roof fall hazard assessment with the use of artificial neural network. International Journal of Rock Mechanics and Mining Sciences, (143), 104701. https://doi.org/10.1016/j.ijrmms.2021.104701
  39. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 58-64
  40. NPAOP 10.0-1.01-10. (2010). Pravyla bezpeky u vuhilnykh shakhtakh. Kyiv, Ukraina: Redaktsiia zhurnalu “Okhorona pratsi”, 430 s.
  41. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering. London, United Kingdom: CRC Press, Taylor & Francis Group, 616 p. https://doi.org/10.1201/b19901
  42. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 300 p. https://doi.org/10.1201/b13157
  43. Nurpeisova, M.B., & Kurmanbaev, O.S. (2016). Laws of devolopment of geomechanical processes in the rock mass Maykain mine. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(420), 109-115.
  44. Nurpeisova, M.B., Sarybaiev, O.A., & Kurmanbaiev, O.S. (2016). Study of regularity of geomechanical processes development while developing deposits by the combined way. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30-36.
  45. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 26-32.
  46. Nurpeissova, M., Bekbassarov, S., Bek, A., Kyrgizbaeva, G., Turisbekov, S., & Ormanbekova, A. (2020). The geodetic monitoring of the engineering structures stability conditions. Journal of Engineering and Applied Sciences, 12(11), 9151-9163. https://doi.org/10.3923/jeasci.2017.9151.9163
  47. SOU 10.1.00185790.011:2007. (2008). Pidhotovchi vyrobky na polohykh plastakh. Vybir kriplennia, sposobiv i zasobiv okhorony. Standart Minvuhlepromu Ukrayiny. Donets’k, Ukraina: DonVUHI, 114 s.
  48. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  49. Małkowski, P., Ostrowski, Ł., & Bożęcki, P. (2017). The impact of the mineral composition of Carboniferous claystones on the water-induced changes of their geomechanical properties. Geology, Geophysics & Environment, 43(1), 43-55. https://doi.org/10.7494/geol.2017.43.1.43
  50. Małkowski, P., Niedbalski, Z., & Balarabe, T. (2020). A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. International Journal of Coal Science & Technology, (8), 312-323. https://doi.org/10.1007/s40789-020-00369-2
  51. Małkowski, P., Ostrowski, Ł., & Bednarek, Ł. (2020). The effect of selected factors on floor upheaval in roadways – in situ testing. Energies, 13(21), 5686. https://doi.org/10.3390/en13215686
  52. Лицензия Creative Commons