Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research into influence of drilling-and-blasting operations on the stability of the Kusmuryn open-pit sides in the Republic of Kazakhstan

Bolatkhan Hussan1, Daulet Takhanov1, Sergey Kuzmin2, Sharabidin Abdibaitov3

1Karaganda Technical University, Karaganda, 10018, Kazakhstan

2Rudny Industrial Institute, Rudny, 10009, Kazakhstan

3Kyrgyz State University of Geology, Mining and Natural Resources Development named after Academician Usengazy Asanaliev, Bishkek, 720001, Kyrgyzstan


Min. miner. depos. 2021, 15(3):130-136


https://doi.org/10.33271/mining15.03.130

Full text (PDF)


      ABSTRACT

      Purpose. Research into influence of drilling-and-blasting operations on the nature of deformation in near-side masses of the design open-pit contours and assessing the seismic impact of blasting operations, which are the basis for development of recommendations on the rational parameters of drilling-and-blasting operations.

      Methods. The influence of drilling-and-blasting operations at the limiting contour of the Kusmuryn field is studied using the analysis of the mining-and-geological conditions and tectonics of the rocks constituing the field, in-situ surveying the state of the open-pit sides, analysis of the physical and mechanical properties of the host rocks, analytical studies and instrumental measurements of the blasting effect.

      Findings. Based on the analytical methods, the calculation and analysis of the seismic stability of the rocks at the field have been performed. By means of instrumental measurement of the blasting effect in open pit, data have been obtained on the seismic impact of blasting operations on the near-side masses. According to the results of these works, rational parameters of drilling-and-blasting operations at the limiting contour of the open pit have been determined. In addition, the main provisions for the organization of drilling-and-blasting operations at the limiting contour of the open pit have been developed.

      Originality. In this work, for the first time, a joint research method is applied, which includes an analytical calculation of the shock wave seismic impact on a rock mass, based on the results of which the dependency graphs have been obtained of the seismicity coefficient on the rock hardness coefficient at the Kusmuryn field according to the Protodyakonov scale for various explosives, as well as using the method of instrumental measurements, which serves to determine the seismic impact of an explosion on a rock mass. This makes it possible to substantiate the technology of conducting the drilling-and-blasting operations at the contour, providing a long-term stable position of the permanent side of the open pit.

      Practical implications. The results of the work will be used to calculate the safe parameters of conducting the blasting operations when placing the side in the final position at the Kusmuryn field. This research method can be applied at any mining enterprise conducting open-cut mining of minerals.

      Keywords: blasting, stability, side, open pit, seismic impact, blast-hole


      REFERENCES

  1. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 17(13), 599-606. https://doi.org/10.5593/sgem2017/13/s03.076
  2. Sobko, B., Drebenstedt, C., & Lozhnikov, O. (2017). Selection of environmentally safe open-pit technology for mining water-bearing deposits. Mining of Mineral Deposits, 11(3), 70-75. https://doi.org/10.15407/mining11.03.070
  3. Symonenko, V.I., Haddad, J.S., Cherniaiev, O.V., Rastsvietaiev, V.O., & Al-Rawashdeh, M.O. (2019). Substantiating systems of open-pit mining equipment in the context of specific cost. Journal of the Institution of Engineers (India): Series D, 100(2), 301-305. https://doi.org/10.1007/s40033-019-00185-2
  4. Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the sub-soil development. New Developments in Mining Engineering, 161-167. https://doi.org/10.1201/b19901-30
  5. Zhanakova, R., Pankratenko, А., Almenov, Т., & Bektur, В. (2020). Rational selection of the form of support for the formation of genetic composition of rocks in the conditions of the beskempir field. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, (439), 106-113. https://doi.org/10.32014/2020.2518-170X.13
  6. Bitimbaev, M.Z., Krupnik, L.A., Aben, E.K., & Aben, K.K. (2017). Adjustment of backfill composition for mineral mining under open pit bottom. Gornyi Zhurnal, (2), 57-61. https://doi.org/10.17580/gzh.2017.02.10
  7. Rzhevskiy, V.V. (2014). Otkrytye gornye raboty. Tekhnologiya i kompleksnaya mekhanizatsiya. Moskva, Rossiya: Librokom, 552 s.
  8. Kutuzov, B.N. (2018). Metody vedeniya vzryvnykh rabot. Chast’ 1. Razrushenie gornykh porod vzryvom. Moskva, Rossiya: Gornaya kniga, 476 s.
  9. Kutuzov, B.N. (2018). Metody vedeniya vzryvnykh rabot. Chast’. 2. Vzryvnye raboty v gornom dele i promyshlennosti. Moskva, Rossiya: Gornaya kniga, 512 s.
  10. Rakishev, B.R. (1983). Prognozirovanie tekhnologicheskikh parametrov vzorvannykh porod na kar’yerakh. Alma-Ata, Kazakhstan: Nauka, 240 s.
  11. Ushakov, D.K. (2019). Analiz faktorov, vliyayushchikh na ustoychivost’ skal’nykh porod v bortakh kar’year. Vestnik ZabGU, 25(1), 29-35. https://doi.org/10.21209/2227-9245-2019-25-1-29-36
  12. Urinov, Sh.R., Nomdorov, R.U., & Dzhumaniyazov, D.D. (2020). Issledovanie faktorov, vliyayushchikh na ustoychivost’ bortov kar’erov. Journal of Advances in Engineering Technology, 1(11), 10-15.
  13. Zairov, Sh.Sh., & Normatova, M.Zh. (2017). The development of constructions and parameters of blasthole charges of explosives under smoothwall blasting to get stable benches slopes. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal, (2), 68-76.
  14. Singh, R., Umrao, R.T., & Singh, T.N. (2014). Stability evaluation of road-cut slopes in the Lesser Himalaya of Uttarakhand, India: Conventional and numerical approaches. Bulletin of Engineering Geology and the Environment, 73(3), 845-857. https://doi.org/10.1007/s10064-013-0532-1
  15. Carrasco, L.G., & Spaerstein, L.W. (1977). Surface morphology of pre-split fractures in Plexiglas models. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14(5-6), 261-275. https://doi.org/10.1016/0148-9062(77)90737-9
  16. Kuzmin, S., Kadnikova, O., Altynbayeva, G., Turbit, A., & Khabdullina, Z. (2020). Development of a new environmentally-friendly technology for transportation of mined rock in the opencast mining. Environmental and Climate Technologies, 24(1), 341-356. https://doi.org/10.2478/rtuect-2020-0019
  17. Trubetskoy, K.N., Kornilkov, S.V., & Yakovlev, V.L. (2012). O novykh podkhodakh k obespecheniyu ustoychivogo razvitiya gornogo proizvodstva. Gornyy Zhurnal, (1), 15-19.
  18. Brotanek, I., & Voda, Y. (1983). Konturnoe vzryvanie v gornom dele i stroitel’stve. Moskva, Rossiya: Nedra, 144 s.
  19. Sadovskiy, M.A. (1946). Prosteyshie priemy opredeleniya seysmicheskoy opasnosti pri vzryvakh. Moskva, Rossiya: IGD im. A.A. Skochinskogo AN SSSR.
  20. Fokin, V.A. (2004). Proektirovanie i proizvodstvo burovzryvnykh rabot pri postanovke ustupov v konechnoe polozhenie na predel’nom konture glubokikh kar’yerov. Apatity, Rossiya: Izdatelstvo Kol’skogo nauchnogo tsentra RAN.
  21. Fokin, V.A. (2005). O prioritetnom mekhanizme formirovaniya shcheli pri konturnom vzryvanii. Izvestiya Vuzov. Gornyy Zhurnal, (6).
  22. Trubetskoy, K.N. (1994). Spravochnik. Otkrytye gornye raboty. Moskva, Rossiya: Gornoe byuro, 590 s.
  23. Kuznetsov, G.V., & Ulybin, V.P. (1968). Konturnoe vzryvanie na otkrytykh gornykh rabotakh. Moskva, Rossiya: Tsentral’nyy nauchno-issledovatel’skiy institut inzhenernykh i tekhniko-ekonomicheskikh issledovaniy tsvetnoy metallurgii.
  24. Khajehzadeh, M., Taha, M.R., & Eslami, M. (2014). Opposition-based firefly algorithm for earth slope stability evaluation. China Ocean Engineering, 28(5), 713-724. https://doi.org/10.1007/s13344-014-0055-y
  25. Travis, Q.B., Schmeeckle, M.W., & Sebert, D.M. (2011). Meta-analysis of 301 slope failure calculations. I: Database description. Journal of Geotechnical and Geoenvironmental Engineering, 137(5), 453-470. https://doi.org/10.1061/(asce)gt.1943-5606.0000461
  26. Takhanov, D.K., Imashev, A.Zh., Balpanova, M.Zh., & Mұratұly B. (2019). Zhayrem kenorny zhaғdayynda kentіrekterdің parametrlerіn anyқtau. Gornyy Zhurnal Kazakhstana, (6), 37-40.
  27. Лицензия Creative Commons