Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Geochemical characterization of the Sutlegen bauxite deposit, SW Antalya

Ozge Ozer Atakoglu1, Mustafa Gurhan Yalcin1

1Akdeniz University, Antalya, 07058, Turkey


Min. miner. depos. 2021, 15(3):108-121


https://doi.org/10.33271/mining15.03.108

Full text (PDF)


      ABSTRACT

      Purpose.The purpose is to determine geological and geochemical characteristics of the Sutlegen (Antalya, Turkey) bauxites, to identify the elements that played a major role in their formation.

      Methods. X-ray diffraction (XRD) mineral phase analysis, X-ray fluorescence (XRF) elemental analysis, plasma-mass spectrometry (ICP-MS), the petrographic and mineralogical analyses, and multivariate statistical methods were used.

      Findings. The major element content of the ore was determined as Al2O3 (60-35.2 wt%), SiO2 (39.5-0.2 wt%), Fe2O3 (48.4-19.5 wt%), TiO2 (36.9-16 wt%), and P2O5 (0.5-0.1 wt%). The Sutlegen region, which shows epirogenetic action with the uplift of the earth's crust, is generally rich in neritic carbonates. It was revealed that the bauxite ores have undergone moderate and strong laterization as a result of the deferruginization in the environment, and they were classified into four groups as lateritic, ferritic, kaolinitic, and bauxite. The increase in the aluminosilicate minerals, which were formed during the formation of bauxite in the environment was found to be directly proportional to the laterization processes. In this context, it was considered that the lateritic material that was firstly formed in the environment filled the cavities and pores of the karst-type limestones and sedimentary units in the region by superficial transfer phenomena. The bivariate diagrams of Log Cr vs. Log Ni revealed that the bauxite that formed in the region had an ultrabasic source.

      Originality. In literature, no scientific studies have been found on bauxite mineralization in the Sutlegen deposits that have been operated for a long period.

      Practical implications. In this context, the geochemical characteristics of bauxites revealed that the source of the laterization process in the region was the ultrabasic igneous rocks. The lateritic material moved by superficial transfer was accumulated on sandstone, claystone, siltstone, and limestone and in karstic cavities; then, it formed karstic bauxite (kaolinitic and bauxite) of different classifications due to the effect of metamorphism.

      Keywords:karstic bauxite, lateritic bauxite, geochemistry, mineralogy, petrography, multivariate statistics


      REFERENCES

  1. Abedini, A., Khosravi, M., & Dill, H.G. (2020). Rare earth element geochemical characteristics of the late Permian Badamlu karst bauxite deposit, NW Iran. Journal of African Earth Sciences, (172), 103974. https://doi.org/10.1016/j.jafrearsci.2020.103974
  2. Borra, C.R., Blanpain, B., Pontikes, Y., Van, B.K., & Gerven. T. (2016). Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review. Journal of Sustainable Metallurgy, 2(4), 365-386. https://doi.org/10.1007/s40831-016-0068-2
  3. Yang, S., Huang, Y., Wang, Q., Deng, J., Liu, X., & Wang, J. (2019). Mineralogical and geochemical features of karst bauxites from Poci (western Henan. China). Implications for parental affinity and bauxitization. Ore Geology Reviews, (105), 295-309. https://doi.org/10.1016/j.oregeorev.2018.12.028
  4. Salamab-Ellahi, S., Taghipour. B., & Mongelli. G. (2019). Clayey bauxite from the Irano-Himalayan belt: Critical metals provenance and palaeoclimate in the Upper Cretaceous Semirom ore deposit. Zagros Mountain, Iran. Journal of Asian Earth Sciences, (172). 126-142. https://doi.org/10.1016/j.jseaes.2018.09.001
  5. Abedini, A., & Khosravi, M. (2020). Geochemical constraints on the Triassic-Jurassic Amir-Abad karst-type bauxite deposit, NW Iran. Journal of Geochemical Exploration, (211), 106489. https://doi.org/10.1016/j.gexplo.2020.106489
  6. Yang, S., Wang, Q., Deng, J., Wang, Y., Kang, W., Liu, X., & Li, Z. (2019). Genesis of karst bauxite-bearing sequences in Baofeng. Henan (China) and the distribution of critical metals. Ore Geology Reviews, (115), 103161. https://doi.org/10.1016/j.oregeorev.2019.103161
  7. Abedini, A., Khosravi, M., & Calagari, A.A. (2019). Geochemical characteristics of the Arbanos karst-type bauxite deposit. NW Iran: Implications for parental affinity and factors controlling the distribution of elements. Journal of Geochemical Exploration, (200), 249-265. https://doi.org/10.1016/j.gexplo.2018.09.004
  8. Authier-Martin, M., Forte, G., & Ostap, S. (2001). The mineralogy of bauxite for producing smelter-grade alumina. JOM, 53(12), 36-40. https://doi.org/10.1007/s11837-001-0011-1
  9. Mongelli, G., Boni, M., Buccione, R., & Sinisi, R. (2014). Geochemistry of the Apulian karst bauxites (Southern Italy): Chemical fractionation and parental affinities. Ore Geology Reviews, (63), 9-21. https://doi.org/10.1016/j.oregeorev.2014.04.012
  10. Ahmadnejad, F., Zamanian, H., Taghipour, B., Zarasvandi, A., Buccione, R., & Ellah, S.S. (2017). Mineralogical and geochemical evolution of the Bidgol bauxite deposit. Zagros Mountain Belt. Iran: Implications for ore genesis rare earth elements fractionation and parental affinity. Ore Geology Reviews, (86), 755-783. https://doi.org/10.1016/j.oregeorev.2017.04.006
  11. Gamaletsos, P.N., Godelitsas. A., Kasama, T., Church, N.S., Douvalis, A.P., Göttlicher, J., Steininger, R., Boubnov, A., Pontikes, Y., Tzamos, E., Bakas, T., & Filippidis. A. (2017). Nano-mineralogy and geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geology Reviews, (84), 228-244. https://doi.org/10.1016/j.oregeorev.2016.11.009
  12. Gamaletsos, P.N., Godelitsas, A., Filippidis, A., & Pontikes, Y. (2019). The rare earth elements potential of Greek bauxite active mines in the light of a sustainable REE demand. Journal of Sustainable Metallurgy, 5(1), 20-47. https://doi.org/10.1007/s40831-018-0192-2
  13. Khosravi, M., Abedini, A., Alipour, S., & Mongelli, G. (2017). The Darzi-Vali bauxite deposit. West-Azarbaidjan Province, Iran: Critical metals distribution and parental affinities. Journal of African Earth Sciences, (129), 960-972. https://doi.org/10.1016/j.jafrearsci.2017.02.024
  14. Radusinović, S., Jelenković, R., Pačevski, A., Simić, V., Božović, D., Holclajtner-Antunović, I., & Životić, D. (2017). Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area. Montenegro). Ore Geology Reviews, (80), 406-428. https://doi.org/10.1016/j.oregeorev.2016.05.026
  15. Ling, K.Y., Zhu, X.Q., Tang, H.S., Du, S.J., & Gu, J. (2018). Geology and geochemistry of the Xiaoshanba bauxite deposit. Central Guizhou Province, SW China: Implications for the behavior of trace and rare earth elements. Journal of Geochemical Exploration, (190), 170-186. https://doi.org/10.1016/j.gexplo.2018.03.007
  16. Abedini, A., Mongelli, G., Khosravi, M., & Sinisi, R. (2020). Geochemistry and secular trends in the middle-late Permian karst bauxite deposits, northwestern Iran. Ore Geology Reviews, (124), 103660. https://doi.org/10.1016/j.oregeorev.2020.103660
  17. MacLean, W.H., Bonavia, F.F., & Sanna, G. (1997). Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo deposit, Sardinia. Mineralium Deposita, (32), 607-616. https://doi.org/10.1007/s001260050126
  18. Meshram, R.R., & Randive, K.R. (2011). Geochemical study of laterites of the Jamnagar district. Gujarat, India: Implications on parent rock mineralogy and tectonics. Journal of Asian Earth Sciences, (42), 1271-1287. https://doi.org/10.1016/j.jseaes.2011.07.014
  19. Yalcin, M.G., Karaman, M.E., & Alagoz, Z. (2012). Origin of the red soils in the Bolkardag region: Pınarkaya-Kayaonu case. (Karaman. Turkey). International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology mining Ecology Management, (4), 149. https://doi.org/10.5593/SGEM2012/S16.V4014
  20. Abedini, A., & Calagari, A.A. (2014). REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turkish Journal of Earth Sciences, 23(5), 513-532. https://doi.org/10.3906/yer-1404-11
  21. Yuste, A., Bauluz, B., & Mayayo, M.J. (2017). Origin and geochemical evolution from ferrallitized clays to karst bauxite: An example from the Lower Cretaceous of NE Spain. Ore Geology Reviews, (84), 67-79. https://doi.org/10.1016/j.oregeorev.2016.12.025
  22. Bárdossy, G. (1982). Karst bauxites bauxite deposits on carbonate rocks. Developments in Economic Geology, (14). https://doi.org/doi:10.1016/c2009-0-14505-1
  23. Bogatyrev, B.A., Zhukov, V.V., & Tsekhovsky. Y.G. (2009). Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithology and Mineral Resources, (44), 135-151. https://doi.org/10.1134/S0024490209020035
  24. Zamanian, H., Ahmadnejad, F., & Zarasvandi, A. (2015). Mineralogical and geochemical investigations of the Mombi bauxite deposit. Zagros Mountains, Iran. Chemie der Erde – Geochemistry, (76), 13-37. https://doi.org/10.1016/j.chemer.2015.10.001
  25. Nyamsari, D.G., & Yalcin, M.G. (2017). Statistical analysis and source rock of the Minim-Martap plateau bauxite, Cameroon. Arabian Journal of Geosciences, 10(18), 415. https://doi.org/10.1007/s12517-017-3172-0
  26. Sidibe, M., & Yalcin, M.G. (2019). Petrography mineralogy geochemistry and genesis of the Balaya bauxite deposits in Kindia region, Maritime Guinea, West Africa. Journal of African Earth Sciences, (149), 348-366. https://doi.org/10.1016/j.jafrearsci.2018.08.017
  27. Oz, C., & Ozer, O. (2019). Application and Interpretation of spectroscopic methods in ceramic archaeometry: XRF, XRD. The Journal of Ceramic Research, (1), 136-153.
  28. Pinto, F.G., Junior, R.E., & Saint’Pierre, T.D. (2012). Sample preparation for determination of rare earth elements in geological samples by ICP-MS: A critical review. Analytical Letters, 45(12), 1537-1556. https://doi.org/10.1080/00032719.2012.677778
  29. Senel, M. (1997). 1/250000 scale Geological Map of Turkey No. 2 to 6: Fethiye Pages. Ankara, Turkey: MTA Publishing.
  30. Senel, M., Serdaroglu, M., Kengil, R., Unverdi, M., & Gozle, M.Z. (1981). Geology of Teke Taurus mountains southeast: MTA Bulletin, (95/96), 13-43.
  31. Senel, M. (1986). 1/250000 scale Geological Map of Turkey No. 2 to 6: Fethiye Pages. Ankara, Turkey: MTA Publishing.
  32. Senel, M. (1989). 1/250000 scale Geological Map of Turkey No. 2 to 6: Fethiye Pages. Ankara, Turkey: MTA Publishing.
  33. Senel, M. (1991). 1/250000 scale Geological Map of Turkey No. 2 to 6: Fethiye Pages. Ankara, Turkey: MTA Publishing.
  34. Senel, M., (1994). 1/250000 scale Geological Map of Turkey No. 2 to 6: Fethiye Pages. Ankara, Turkey: MTA Publishing.
  35. Senel, M. (1985). 1/25000 scale digital geological map, Fethiye P23 Plot of Turkey geological database, the geological survey department. Ankara, Turkey: MTA Publishing.
  36. Baykal, F., & Onalan, M. (1979). Sile sedimentary (Sile Olistostromu) Altinli Symposium (pp. 15-25). Ankara, Turkey.
  37. Ocal, H. (1988). 1/25000 scale digital geological map, Fethiye P23 Plot of Turkey geological database, the geological survey department. Ankara, Turkey: MTA Publishing.
  38. Gunay, Y., Bolukbasi, S., & Yoldemir, O. (1982). Stratigraphy and structure of the Beydaglari: Abstracts of the 6th Petroleum Congress of Turkey (pp. 91-101).
  39. Yalcin, M.G., Nyamsari, D.G., Atakoglu, O.O., & Yalcin, F. (2021). Chemical and statistical characterization of beach sand sediments: Implication for natural and anthropogenic origin and paleo-environment. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03280-8
  40. Dangic, A. (1988). Kaolinization of bauxite: A study of the Vlasenica bauxite area Yugoslavia II. Alteration of oolites. Clays and Clay Minerals, (36), 439-447. https://doi.org/10.1346/CCMN.1985.0330606
  41. Meyer, F.M., Happel, U., Hausberg, J., & Wiechowski, A. (2002). The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela. Ore Geology Reviews, (20), 27-54. https://doi.org/10.1016/S0169-1368(02)00037-9
  42. Yalcin, M.G., & Ilhan, S. (2008). Major and trace element geochemistry of Terra Rossa soil in the Kucukkoras region. Karaman. Turkey. Geochemistry International, 46(10), 1038. https://doi.org/10.1134/S001670290810008X
  43. Schellmann, W. (1982). Eine neue Lateritdefinition. Geologisches Jahrbuch – Reihe D, (58), 31-47.
  44. Gu, J., Huang, Z., Fan, H., Jin, Z., Yan, Z., & Zhang, J. (2013). Mineralogy: Geochemistry.and genesis of lateritic bauxite deposits in the Wuchuan-Zheng’an-Daozhenarea. Northern Guizhou Province, China. Journal of Geochemical Exploration, (130), 44-59. https://doi.org/10.22071/GSJ.2018.89035.1149
  45. Liu, X.F, Wang, Q., Feng, Y., Li, Z., & Cai, S. (2013). Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geology Reviews, (55), 162-175. https://doi.org/10.1016/j.oregeorev.2013.06.002
  46. Schulte, R.F., & Foley, N.K. (2013). Compilation of gallium resource data for bauxite deposits (No. 2013-1272). New York, United State: US Geological Survey.
  47. Ozer, O., & Yalcin, M.G. (2020). Correlation of chemical contents of Sutlegen (Antalya) bauxites and regression analysis. AIP Conference Proceedings, (2293), 180008. https://doi.org/10.1063/5.0026731
  48. Aleva, G.J.J. (1994). Laterites: Concepts geology morphology and chemistry. International Soil Reference and Information Centre (ISRIC).
  49. Sun, S.S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, (42), 313-345.
  50. Bárdossy, G., & Aleva. G. J.J. (1990). Lateritic bauxites. London, United Kingdom: Elsevier Science Ltd.
  51. Boulangé, B., & Carvalho, A. (1997). The bauxite of Porto Trombetas Brazilian Bauxites. USP/FAPESP/ORSTOM, 55-73.
  52. Beauvais, A., & Colin. F. (1993). Formation and transformation processes of iron duricrust systems in tropical humid environment. Chemical Geology, 106(1-2), 77-101.https://doi.org/10.1016/0009-2541(93)90167-H
  53. Tardy, Y. (1997). Petrology of laterites and tropical soils. London, United Kingdom: Balkema, 408 p.
  54. Bárdossy, G., & Combes, P.J. (1999). Karst bauxites: interfingering of deposition and palaeoweathering. In: Thiry, M., Simon-Coincon, R. (Eds.). Paleoweathering. Paleo surfaces and related continental deposits. International Association of Sedimentologists, (27), 189-206.
  55. Nyamsari, D.G., Yalcin, F., Mboh, M.T., Alfred, F.G., & Yalcin, M.G. (2019). Natural radioactive risk assessment in top soil and possible health effect in Minim and Martap villages. Cameroon: Using radioactive risk index and statistical analysis. Kerntechnik, 84(2), 115-122. https://doi.org/10.3139/124.110927
  56. Taylor, S.R., & McLennan, S.M. (1981). The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 301(1461), 381-399. https://doi.org/10.1098/rsta.1981.0119
  57. Taylor, S.R., & McLennan, S.M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241-265. https://doi.org/10.1029/95RG00262
  58. Ozer Atakoglu, O., Yalcin, M.G., & Ozmen, S.F. (2021). Determination of radiological hazard parameters and radioactivity concentrations in bauxite samples: The case of the Sutlegen Mine Region (Antalya, Turkey). Journal of Radioanalytical and Nuclear Chemistry, 329(2), 701-715. https://doi.org/10.1007/s10967-021-07826-5
  59. Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, (107), 501-504. https://doi.org/10.1017/S0016756800058581
  60. Fedo, C.M., Nesbitt, H.W., & Young, G.M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols with implications for paleoweathering conditions and provenance. Geology, (23), 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
  61. Nesbitt, H.W., & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutite. Nature, (299), 715-717. https://doi.org/10.1038/299715a0
  62. Price, J.R., & Velbel, M.A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, (202), 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001
  63. Ruxton, B.P. (1968). Measures of the degree of chemical weathering of rocks. Journal of Geology, (76), 518-527. https://doi.org/10.1086/627357
  64. Yalcin, M.G., & Ilhan, S. (2013). Major and trace element geochemistry of bauxites of Ayranci, Karaman, Central Bolkardag, Turkey. Asian Journal of Chemistry, 25(5), 2893-2904. http://dx.doi.org/10.14233/ajchem.2013.14275
  65. Denigres, F., Rocha, G.D.A., Montes, C.R., & Vieira-Coelho, A.C. (2016). Synthesis and characterization of boehmites obtained from gibbsite in presence of different environments. Materials Research, 19(3), 659-668. https://doi.org/10.1590/1980-5373-MR-2016-0019
  66. Tardy, Y., Valeton, I., & Melfi, A. (1988). Climats et paleoclimats tropicaux piriatlantiques. Rôle des facteurs climatiques et thermodynamiques: Température et activité de l'eau, sur la répartition et la composition minéralogique des bauxites et des cuirasses ferrugineuses, au Brésil et en Afrique. Comptes Rendus. Académie des Sciences, 306(11), 289-295.
  67. Krishnamurthy, N., & Gupta, C.K. (2015). Extractive metallurgy of rare Earths. Florida, United States: CRC Press.
  68. Li, G., Ye, Q., Deng, B., Luo, J., Rao, M., Peng, Z., & Jiang, T. (2018). Extraction of scandium from scandium-rich material derived from bauxite ore residues. Hydrometallurgy, (176), 62-68. https://doi.org/10.1016/j.hydromet.2018.01.007
  69. Maclean, W.H. (1990). Mass change calculations in altered rock series. Mineralium Deposita, (25), 44-49. https://doi.org/10.1007/BF03326382
  70. Calagari, A.A., & Abedini, A. (2007). Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration, 94(1-3), 1-18. https://doi.org/10.1016/j.gexplo.2007.04.003
  71. Ozer, O., & Yalcin, M.G. (2019). Modeling of elemental distribution of Kas (Antalya) bauxite deposit II. International Conference of Numerical Analysis and Applied Mathematics. Rhodes. Greece.
  72. Hill, I.G., Worden, R.H., & Meighan, I.G. (2000). Geochemical evolution of a palaeolaterite: The interbasaltic formation, Northern Ireland. Chemical Geology, 166(1), 65-84. https://doi.org/10.1016/S0009-2541(99)00179-5
  73. Patino, L.C., Velbel, M.A., Price, J.R., & Wade, J.A. (2003). Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala. Chemical Geology, 202(3-4), 343-364. https://doi.org/10.1016/j.chemgeo.2003.01.002
  74. Ozlu, N. (1984). New facts on diaspore genesis in the Akseki-Seydisehir bauxite deposits (Western Taurus, Turkey). Travaux du Comité International Pour L’étude des Bauxites de L’alumine et de L’aluminium, (14), 53-62.
  75. Bland, W., & Rolls, D. (1998). Weathering: An introduction to scientific principles. London, United Kingdom: Arnold.
  76. Raiswell, R.W., Brimblecombe, P., Dent, D.L., & Liss, P.S. (1980). Environmental chemistry: The earth air-water factory. New Jersy, United States: John Wiley & Sons.
  77. Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., & Guillet, B. (1990). Ceriumanomalies in lateritic profiles. Geochim. Cosmochimia Acta, (54), 781-795. https://doi.org/10.1016/0016-7037(90)90373-S
  78. Nyakairu, G.W., Koeberl, C., & Kurzweil, H. (2001). The Buwambo kaolin deposit in central Uganda: Mineralogical and chemical composition. Geochemical Journal, 35(4), 245-256. https://doi.org/10.2343/geochemj.35.245
  79. Compton, J.S., White, R.A., & Smith, M. (2003). Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chemical Geology, 201(3-4), 239-255. https://doi.org/10.1016/S0009-2541(03)00239-0
  80. Schroll, E., & Sauer, D. (1968). Beitrag zur Geochemie von Titan, Chrom, Nickel, Cobalt, Vanadium und Molyb din in bauxitischen Gesteinen und das Problem der stofflichen Herkunft des Aluminiums. Travaux du ICSOBA, (5), 83-96.
  81. Ozlu, N. (1983). Trace element contents of karst bauxites and their parent rocks in the Mediterranean belt. Mineralium Deposita, (18), 469-476.
  82. Nyamsari, D.G., Yalcin, M.G., & Wolfson, I. (2020). Alteration, chemical processes, and parent rocks of Haléo-Danielle Plateau bauxite, Adamawa-Cameroon. Lithology and Mineral Resources, (55), 231-243. https://doi.org/10.1134/S0024490220030049
  83. Mongelli, G., Boni, M., Oggiano, G., Mameli, P., Sinisi, R., Buccione, R., & Mondillo, N. (2017). Critical metals distribution in Tethyan karst bauxite: The cretaceous Italian ores. Ore Geology Reviews, (86), 526-536. https://doi.org/10.1016/j.oregeorev.2017.03.017
  84. Putzolu, F., Piccolo Papa, A., Mondillo, N., Boni, M., Balassone, G., & Mormone, A. (2018). Geochemical characterization of bauxite deposits from the Abruzzi mining district (Italy). Minerals, (8), 298. https://doi.org/10.3390/min8070298
  85. Salamab-Ellahi, S., Taghipour, B., & Nejadhadad, M. (2017). The role of organic matter in the formation of high-grade Al deposits of the Dopolan karst type bauxite, Iran: Mineralogy, geochemistry, and sulfur isotope data. Minerals, (7), 97. https://doi.org/10. 3390/min7060097
  86. Patterson, S.H., Kurtz, H.F., Olson, J.C., & Neeley, C.L. (1986). World bauxite resources. U.S. Geological Survey. Professional Paper. 1076B. Washington, United States: U.S. Government Printing Office.
  87. Mondillo, N., Balassone, G., Boni, M., & Rollinson, G.G. (2011). Karst bauxites in the Campania Apennines (southern Italy): A new approach. Periodico di Mineralogia, 80(3), 407-432. https://doi.org/10.2451/2011PM0028
  88. Ince, Z., Atakoglu, O.O., & Yalcin, M.G. (2021). Multivariate and spatial statistical analysis of geochemical data of dolomite: The case of industrial raw materials’ differentiation. Montes Taurus Journal of Pure and Applied Mathematics, 3(2), 8-28.
  89. Yalcin, M.G., Nyamsari, D.G., Paksu, E., & Yalcin, F. (2016). Statistical assessment of rare earth elements of bauxite deposits of Minim-Martap Plateau, Cameroon. International Multidisciplinary Scientific GeoConference: Surveying Geology Mining Ecology Management, (2), 819-825. https://doi.org/10.5593/sgem2016/b12/s03.105
  90. Ozer, O., Yalcin, F., Tarinc, O.K., & Yalcin, M.G. (2020). Investigation of suitability of marbles to standards with inequality expressions and statistical approach using some physical and mechanical properties. Journal of Inequalities and Applications, 2020(1), 1-15. https://doi.org/10.1186/s13660-020-02360-6
  91. Kursun, G.B., & Yalcin, M.G. (2020). Origin of barite deposits in dolomite-limestone units, Gazipasa, Eastern of Antalya: Geology, geochemistry, statistics, sulfur isotope composition. Mining of Mineral Deposits, 14(1), 62-71.https://doi.org/10.33271/mining14.01.062
  92. Лицензия Creative Commons