Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

The ways to enhance durability and bearing capacity of the open gear drum mills

Borys Vynohradov1, Veronika Karpenko1, Olena Lahoshna2, Kostiantyn Bas2, Iryna Slovska3

1Ukrainian State University of Chemical Technology, Dnipro, 49005, Ukraine

2Dnipro University of Technology, Dnipro, 49005, Ukraine

3National University of Water and Environmental Engineering, Rivne, 33028, Ukraine


Min. miner. depos. 2021, 15(3):87-94


https://doi.org/10.33271/mining15.03.087

Full text (PDF)


      ABSTRACT

      Purpose is substantiating ways to enhance durability and bearing capacity of open gears of ore-pulverizing drum mills as well as efficiency of engineering solutions concerning the increase in their unit power at the expense of drive improvement.

      Methods. Results of continual experiments and theoretical studies have been generalized as for the abrasion of working surfaces of open gear teeth of drum mills and factors influencing load distribution in terms of a tooth rim width.

      Findings. Comparative analysis between domestic mills and the best world-class products has been carried out. Ways of solving problems to design large-capacity mills with a gearbox drive have been demonstrated. Influence of hardness of working teeth surfaces on their durability has been evaluated quantitatively. The factors, governing load distribution in terms of tooth rim width, have been analyzed. Use of self-adjusting gear drives for open gears has been evaluated.

      Originality. Functional relation between stress-strain properties of working surface of teeth; the number of running-in modes, determined by operational conditions; and durability of open gear has been identified. The factors, influencing load distribution in terms of tooth rim width, have been considered.

      Practical implications. It has been shown that use of such open gears, where hardness of working surface of gear teeth is (500-600) H1B1 and that of a tooth rim one is (260-300) H2B2, makes it possible to provide almost wear-free operation. Moreover, it is the required condition for the performance of a tooth rim with two drive gears.

      Keywords:drum mill, open gear, load distribution, abrasion, self-adjusting gear


      REFERENCES

  1. State Fiscal Service of Ukraine. (2020). Available online http://sfs.gov.ua
  2. Shatokha, V. (2015). The sustainability of the iron and steel industries in Ukraine: Challenges and opportunities. Journal of Sustainable Metallurgy, 2(2), 106-115. https://doi.org/10.1007/s40831-015-0036-2
  3. Peregudov, V.V., Gritsina, A.E., & Dragun, B.T. (2010). Current state and future development of iron-ore industry in Ukraine. Metallurgical and Mining Industry, (2), 145-151.
  4. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable underground iron ore mining in Ukraine with backfilling worked-out area. Sustainability, 13(2), 834. https://doi.org/10.3390/su13020834
  5. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8
  6. Stupnik, M.I., Kalinichenko, V.O., Kalinichenko, O.V., Muzika, I.O., Fed’ko, M.B., & Pis’menniy, S.V. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and Mining Industry, (7), 377-382.
  7. Baibatsha, A., Omarova, G., & Shakirova, G. (2019). Innovative technologies of mineral resources predictioin on covered territories. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 19(1), 271-278. https://doi.org/10.5593/sgem2019/1.1/s01.033
  8. Vinogradov, B.V. (2003). Diagnostics of technical state of open gear transmissions of drum mills. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (6), 85-87.
  9. Krupnik, L., Yelemessov, K., Beisenov, B., & Baskanbayeva, D. (2020). Substantiation and process design to manufacture polymer-concrete transfer cases for mining machines. Mining of Mineral Deposits, 14(2), 103-109. https://doi.org/10.33271/mining14.02.103
  10. Mulyavko, V.I., Oleynik, T.A., Oleynik, M.O., Mikhno, S.V., & Lyashenko, V.I. (2014). Innovation technologies and machinery for separation of feebly magnetic ores. Obogashchenie Rud, (2), 43-49.
  11. Casagrande, C., Alvarenga, T., & Pessanha, S. (2016). Study of iron ore mixtures behavior in the grinding pelletizing process. Mineral Processing and Extractive Metallurgy Review, 38(1), 30-35. https://doi.org/10.1080/08827508.2016.1244058
  12. Yang, J., Shuai, Z., Zhou, W., & Ma, S. (2019). Grinding optimization of cassiterite-polymetallic sulfide ore. Minerals, 9(2), 134. https://doi.org/10.3390/min9020134
  13. Grigorova, I., Ranchev, M., Yankova, T., & Nishkov, I. (2018). Industrial grinding estimation of blended ore from porphyry copper deposit. International Journal of Mining Science, 4(2), 16-22. https://doi.org/10.20431/2454-9460.0402002
  14. Meshcheriakov, L., Kozhevnykov, A., & Prykhodchenko, S. (2021). Intellectual agents of targets in analytical constructing of optimum systems of management of drum mills. Collection of Research Papers of the National Mining University, (64), 264-272. https://doi.org/10.33271/crpnmu/64.264
  15. Abouzeid, A.-Z.M., & Fuerstenau, D.W. (2012). Flow of materials in rod mills as compared to ball mills in dry systems. International Journal of Mineral Processing, (102-103), 51-57. https://doi.org/10.1016/j.minpro.2011.09.013
  16. Styuart, D., & Svalbonas, V. (2004). Krupnogabaritnye mel’nitsy izmel’cheniya kompanii Metso Minerals. Gornaya Promyshlennost’, (6), 58-64.
  17. Omarova, G., Baibatsha, A., & Abdykirova, G.Z. (2019). Flotation enrichment of enrichment factory tailings for use as technogenic ore. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 19(1), 195-202. https://doi.org/10.5593/sgem2019/1.1/s01.024
  18. Sladkowski, A., Utegenova, A., Elemesov, K., & Stolpovskikh, I. (2017). Determining of the rational capacity of a bunker for cyclic-and-continuous technology in quarries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29-33.
  19. Zhautikov, F.B., Isagulov, A.Z., Zhautikov, B.A., Romanov, V.I., & Babenko, A.A. (2019). Development and Implementation of a Device for the Separation of Metal and Slag During Tundish Filling. Metallurgist, 63(7-8), 672-674. https://doi.org/10.1007/s11015-019-00874-z
  20. Zhautikov, B.A., & Aikeyeva, A.A. (2018). Development of the system for air gap adjustment and skip protection of electromagnetic lifting unit. Journal of Mining Institute, (229), 62-69.
  21. Krupnik, L., Yelemessov, K., Bortebayev, S., & Baskanbayeva, D. (2018). Studying fiber­reinforced concrete for casting housing parts of pumps. Eastern-European Journal of Enterprise Technologies, 6(12(96)), 22-27. https://doi.org/10.15587/1729-4061.2018.151038
  22. Mel’nitsy mokrogo polusamoizmel’cheniya. (2020). Retrieved from: https://www.tyazhmash.com/products/construction/mil-sag/
  23. Kuandykov, T., Nauryzbayeva, D., Yelemessov, K, Karmanov, T., Kakimov, U., & Kolga, A. (2020). Development and justification of a hydro-impulse method for increasing ore permeability in conditions of uranium borehole production. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 126-133. https://doi.org/10.32014/2020.2518-170X.139
  24. Tikhonov, N., & Skarin, O. (2014). Raschet mel’nits polusamoizmel’cheniya po energeticheskim indeksam. Gornyy Zhurnal, (11), 6-11.
  25. Yulusov, S., Surkova, T.Y., Amanzholova, L.U., & Barmenshinova, M.B. (2018). On sorption of the rare-earth elements. Journal of Chemical Technology and Metallurgy, 53(1), 79-82.
  26. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., & Koziar, M. (2020). Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials, (844), 77-87. https://doi.org/10.4028/www.scientific.net/kem.844.77
  27. Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity. Eastern-European Journal of Enterprise Technologies, 5(5 (83)), 19-24. https://doi.org/10.15587/1729-4061.2016.79524
  28. Yulusov, S., Surkova, T.Y., Kozlov, V.A., & Barmenshinova, M. (2018). Application of hydrolytic precipitation for separation of rare-earth and impurity. Journal of Chemical Technology and Metallurgy, 53(1), 27-30.
  29. Baibatsha, A., Dyussembayeva, K., & Bekbotayeva, A. (2016). Study of tails enrichment factory Zhezkazgan as a technogenic ore deposits. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 579-586. https://doi.org/10.5593/sgem2016/b11/s01.073
  30. Baibatsha, A., Dussembayeva, K., Bekbotayeva, A., & Abdullayeva, М.T. (2018). Tails of enrichment factories as the technogenic mineral resources. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 18(1), 519-526. https://doi.org/10.5593/sgem2018/1.1/s01.066
  31. Goryunov, A.V., Ivanov, A.N., & Tikhonov, N.O. (2016). Erdenet auto-/semiauto-grinding system: Effect and prospects. Gornyi Zhurnal, (11), 4-8. https://doi.org/10.17580/gzh.2016.11.01
  32. Marten vann de Veyfeyken. (2011). Mel’nitsy i bezreduktornye privody: Bol’shie i samye bol’shie. Gornaya Promyshlennost’, (1), 46-50.
  33. Amato, R. (2007). Bokovoy reduktornyy privod L6D. Tsement i Ego Primenenie, (5), 44-47.
  34. Lyashenko, V.I., Dyatchin, V.Z., & Franchuk, V.P. (2018). Improvement of vibrating feeders-screens for mining and metallurgical industry. Izvestiya. Ferrous Metallurgy, 61(6), 470-477. https://doi.org/10.17073/0368-0797-2018-6-470-477
  35. Van de Vijfeijken, M., Filidore, A., Walbert, M., & Marks, A. (2011). Copper mountain: Overview on the grinding mills and their dual pinion mill Vancouver. Fifth International Conference on Autogeneous and Semi-Autogenous Grinding, 1-20.
  36. Mian, U. (2011). MAAG CEM Drive – Privod novoy konstruktsii. Tsement i Ego Primenenie, (2), 110-111.
  37. Troshina, A.G. (2007). Modernizatsiya privodov gorizontal’nykh mel’nits. (2007). Tsement i Ego Primenenie, (6), 71-74.
  38. Vinogradov, B. (2016). Statyka і dynamіka barabannykh mlynіv. Dnіpro, Ukraina: DVNZ UDKhTU, 202 s.
  39. Rajagopal, M., Kumar, N., & Rao, P. (2016). Minimizing tooth mesh misalignment in heavy duty tractor gair pair. SAE Technical Paper, 2016-01-8069. https://doi.org/10.4271/2016-01-8069
  40. Jiang, H., Shao, Y., & Mechefske, C. (2015). The influence of mesh misalignment on the dynamic characteristics of helical gears including sliding friction. Journal of Mechanical Science and Technology, 29(11), 4563-4573. https://doi.org/10.1007/s12206-015-1001-5
  41. Telkov, S.A., Motovilov, I.Y., Barmenshinova, M.B., Medyanik, N.L., & Daruesh, G.S. (2019). Substantiation of gravity concentration to the Shalkiya deposit lead-zinc ore. Journal of Mining Science, 55(3), 430-436. https://doi.org/10.1134/s1062739119035769
  42. Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409. https://doi.org/10.1016/s0020-7462(96)00047-9
  43. Motovilov, I.Y., Telkov, S.A., Barmenshinova, M.B., & Nurmanova, A.N. (2019). Examination of the preliminary gravity dressing influence on the Shalkiya deposit complex ore. Non-Ferrous Metals, 47(2), 3-8. https://doi.org/10.17580/nfm.2019.02
  44. Henne, H., & Grothaus, H. (1984). Rotatable drum. Patent US 4911554A. Washington, United States.
  45. Lyudagovskiy, L.A. (2015). Osobennosti iznosa trushchikhsya soedineniy v uprugikh zubchatykh kolesakh s prizmaticheskimi rezinovymi elementami. Nauka i Tekhnika Transporta, (4), 34-38.
  46. Medvedev, D. (2009). Avtomaticheskie sistemy smazki otkrytykh zubchatykh peredach privoda barabannykh mel’nits. Izvestiya Peterburgskogo Universiteta Putey Soobshcheniya, (3), 105-112.
  47. Ivanov, S., Fokin, A., & Poddubnaya, A. (2009). Sravnitel’naya otsenka intensivnosti iznosa krupno-modul’nykh zubchatykh peredach v zavisimosti ot usloviy smazki. Zapiski Gornogo Instituta, (182), 129-132.
  48. Vinogradov, B.V., Homišin, J., & Kchristenko, A.V. (2016). Limitation of dynamic loads in machine drives. Diagnostyka, 17(2), 35-41.
  49. ISO 6336-1:2019. (2019). Calculation of load capacity of spur and helical gears – Part 1: Basic principles, introduction and general influence factors. Vernier, Geneva: International standard.
  50. Лицензия Creative Commons