Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Mathematical modelling of thermal stresses within the borehole walls in terms of plasma action

Anatolii Bulat1, Valentyn Osіnnii1, Andrii Dreus2, Nataliia Osіnnia1

1Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro, 49005, Ukraine

2Oles Honchar Dnipro National University, Dnipro, 49010, Ukraine


Min. miner. depos. 2021, 15(2):63-69


https://doi.org/10.33271/mining15.02.063

Full text (PDF)


      ABSTRACT

      Purpose is the development of a mathematical model to study and describe thermal processes within the borehole wall in terms of plasma-based rock breaking.

      Methods. The following has been applied: theoretical analysis in the framework of a theory of brittle thermoelasticity breaking, methods of mathematical modeling, and computational experiment.

      Findings. Brief information on the results of the development of advanced plasma-based technology for borehole reaming for hard mineral mining has been represented. The results of industrial tests of plasma plant of 150-200 kW·s power with plasma-generating gas in the air for hard rock breaking have been represented. The plant and plasma-based technology of borehole reaming were tested in underground conditions of Kryvbas mines while reaming a perimeter hole to drive a ventilation rise in silicate-magnetite quartzites. A mathematical model has been proposed to analyze heat and mechanical fields in the rock during the plasma-based action on the borehole walls. Numerical studies of the temperature dynamics and thermal stresses within the borehole-surrounding rock layer have been carried out. It has been demonstrated that if low-temperature plasma is used (Т = 3500-4000°С), thermal compressing stresses are induced within the thin rock layer; the stresses may exceed the boundary admissible ones. It has been identified that plasma-based effect on the borehole wall makes it possible to create the conditions for intense rock fracturing and breaking.

      Originality. Solution of a new problem of thermoelastic state of a borehole wall in terms of plasma action has been obtained. The proposed mathematical model has been formulated in a cylindrical coordinate system and considers convective and radiation heat exchange between a plasma jet and a borehole wall.

      Practical implications. The obtained results make it possible to assess the rock state depending on the plasma jet parameters. The proposed methods of calculations will help carry out research to evaluate breaking parameters (the required heating time, thickness of the heated layer, and approximate spall dimensions) and develop different methods for the breaking process control.

      Keywords: plasma-based technology, thermal stresses, heat transfer, borehole reaming, mathematical modeling


      REFERENCES

  1. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p.https://doi.org/10.1201/b19901
  2. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Cáceres Cabana, E. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko Geolosko Naftni Zbornik, 42(4), 73-82. https://doi.org/10.17794/rgn.2018.4.7
  3. Ndeda, R., Sebusang, E., Marumo, R., & Ogur, E. (2015) Review of thermal surface drilling technologies. Proceedings of Sustainable Research and Innovation Conference, 61-69.
  4. Wilkinson, M.A., & Tester, J.W. (1993). Experimental measurement of surface temperatures during flame-jet induced thermal spallation. Rock Mechanics and Rock Engineering, 26(1), 29-62. https://doi.org/10.1007/bf01019868
  5. Yang, Y., Chen, Z., & Zhang, Y. (2016). Melt flow and heat transfer in laser drilling. International Journal of Thermal Sciences, (107), 141-152.https://doi.org/10.1016/j.ijthermalsci.2016.04.006
  6. Rossi, E., Jamali, S., Wittig, V., Saar, M.O., & von Rohr, P.R. (2020). A combined thermo-mechanical drilling technology for deep geothermal and hard rock reservoirs. Geothermics, (85), 101771. https://doi.org/10.1016/j.geothermics.2019.101771
  7. Cao, X, Kozhevnykov, A., Dreus, A., & Liu, B. (2019). Diamond core drilling process using intermittent flushing mode. Arabian Journal of Geosciences, 12(4), 137. https://doi.org/10.1007/s12517-019-4287-2
  8. Dreus, A., & Kozhevnykov, A. (2019) Innovative approach to drilling of geothermal deep wells using the heat factor. IEEE 6th International Conference on Energy Smart Systems, 192-195.https://doi.org/10.1109/ESS.2019.8764208
  9. Kocis, I., Kristofic, T., Gebura, M., Horvath, G., Gajdos, M., & Stofanik, V. (2017). Novel deep drilling technology based on electric plasma developed in Slovakia. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4. https://doi.org/10.23919/ursigass.2017.8105224
  10. Bulat, A.F., Nikiforova, V.A., & Osenniy, V.Ya. (2006). Improving the efficiency of drilling and blasting operations in the hard ores. Visnyk KSPI, 2(37), 93-94.
  11. Osenniy, V.Ya. (2012). On a model for creating a boiler cavity by a plasma heat generator. Geotechnical Mechanics, (98), 254-262.
  12. Mashchenko, V.А., Khomenko, О.Ye., & Kvasnikov, V.P. (2020). Thermodynamic aspect of rock destruction. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 25-30.https://doi.org/10.33271/nvngu/2020-1/025
  13. Dmitriev, A.P., Goncharov, S.A., & Germanovich, L.N. (1990). Thermal destruction of rocks. Moscow, Russian Federation: Nedra, 255 p.
  14. Lyu, Z., Song, X., Shi, Y., Li, G., Hu, X., Zheng, R., & Wang, G. (2017). Experimental study on specific energy of thermal spallation drilling technology. 51st U.S. Rock Mechanics/Geomechanics Symposium. USA ARMA-2017-0279.
  15. Voloshyn, O., Potapchuk, I., Zhevzhyk, O. & Zhovtonoha, M. (2018). Results of the experimental research of the heat-transfer jet pressure to the rock surface during thermal reaming of the borehole. E3S Web of Conferences, (60), 00024.https://doi.org/10.1051/e3sconf/20186000024
  16. Kant, M.A., Rossi, E., Madonna, C.D., Höser, D., & Rudolf von Rohr, P. (2017). A theory on thermal spalling of rocks with a focus on thermal spallation drilling. Journal of Geophysical Research: Solid Earth, 122(3), 1805-1815.https://doi.org/10.1002/2016JB013800
  17. Mardoukhi, A., Saksala, T., Hokka, M., & Kuokkala, V.-T. (2017). A numerical and experimental study on the tensile behavior of plasma shocked granite under dynamic loading. Rakenteiden Mekaniikka, 50(2), 41-62.https://doi.org/10.23998/rm.65301
  18. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., & Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-10.
  19. Walsh, S.D., Lomov, I., & Roberts, J.J. (2011). Geomechanical modeling for thermal spallation drilling. Geothermal Resources Council Annual Meeting 2011, 277-282.
  20. Bulat, A., Blyuss, B., Dreus, A., Liu, B., & Dziuba, S. (2019). Modelling of deep wells thermal modes. Mining of Mineral Deposits, 13(1), 58-65.https://doi.org/10.33271/mining13.01.058
  21. Biberman, L.M., & Mnathakanyan, A.Kh. (1966). The optical properties of air in the temperature range 4000-10000 K. Teplofizika Vysokikh Temperatur, 4(2), 148-159.
  22. Sary, G., Dufour, G., Rogier, F., & Kourtzanidis, K. (2014). Modeling and parametric study of a plasma synthetic jet for flow control. AIAA Journal, 52(8), 1591-1603. https://doi.org/10.2514/1.j052521
  23. Philippe, M., Bernier, M., & Marchio, D. (2009). Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes. Geothermics, 38(4), 407-413. https://doi.org/10.1016/j.geothermics.2009.07.002
  24. Kovalenko, A.D. (1975). Thermoelasticity. Kyiv, Ukraine: Naukova dumka, 216 p.
  25. Sudakov, A.K., Dreus, A.Yu., Khomenko, O.Ye., & Sudakova, D.A. (2017). Analytical study of heat transfer in absorptive horizons of borehole at forming cryogenic protecting of the plugging material. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 38-42.
  26. Vosteen, H.D., & Schellschmidt, R. (2003). Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, (28), 499-509.https://doi.org/10.1016/S1474-7065(03)00069-X
  27. Moskalev, A.N., Pigida, Ye.Yu., Kerekelitsa, L.G., & Vakhalin, Yu.N. (1987). The destruction of rocks during thermocyclic exposure. Kyiv, Ukraine: Naukova dumka, 248 p.
  28. Лицензия Creative Commons