New technology for mineral deposits prediction to identify prospective areas in the Zhezkazgan ore region
Boris Zeylik1, Yalkunzhan Arshamov1, Refat Baratov2, Alma Bekbotayeva1
1Satbayev University, Almaty, 50013, Kazakhstan
Min. miner. depos. 2021, 15(2):134-142
https://doi.org/10.33271/mining15.02.134
Full text (PDF)
      ABSTRACT
      Purpose. Exploration and predicting the prospective areas in the Zhezkazgan ore region to set up detailed prospecting and evaluation works using new integrated technologies of prediction constructions in the mineral deposits geology.
      Methods. An integrated methodological approach is used, including methods for deciphering the Earth’s remote sensing (ERS) data, the use of geophysical data and methods of analogy and actualism. All constructions are made in accordance with the principles of shock-explosive tectonics (SET). Prediction constructions are started with the selection of remote sensing data for the studied region and interpretation based on the processing of radar satellite images obtained from the Radarsat-1 satellite. The radar satellite images are processed in the Erdas Imagine software package.
      Findings. New local prospective areas have been identified, within which it is expected to discover the deposits. Their reserves are to replenish the depleted ore base in the Zhezkazgan region. Area of the gravity maximum 1 (the Near), considered to be the most promising, is located in close proximity to the city of Zhezkazgan; area of the gravity maximum 2 (the Middle); area of the gravity maximum 3 (the Distant-Tabylga); area of the gravity maximum 6 (the Central). A prospective area has been also revealed, overlaid by a loose sediment cover and located inside the Terekty ring structure, as well as the area of a thick stratum of pyritized grey sandstones, which is adjacent to the Sh-2 well drilled to the south of the Zhezkazgan field.
      Originality. The use of a new prediction technology, in contrast to the known ones, is conditioned by the widespread use of the latest remote information from satellite images, which increases the accuracy of identifying the prospective areas of fields.
      Practical implications. The new technology for predicting mineral deposits makes it possible to significantly reduce the areas exposed to priority prospecting, which provides significant cost savings.
      Keywords: mineral deposits prediction, cosmogenic ring structures, concentric zones, superimposed blocks, gravimetry
      REFERENCES
- Baibatsha, A.B., Bekbotayeva, A.A., & Mamanov, E. (2015). Detection of deep ore-controlling structure using remote sensing. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 113-118. https://doi.org/10.5593/sgem2015/b11/s1.015
- Baibatsha, A., Omarova, G., & Shakirova, G. (2019). Innovative technologies of mineral resources predictioin on covered territories. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 271-278. https://doi.org/10.5593/sgem2019/1.1/s01.033
- Baibatsha, A., Dyussembayeva, K., & Bekbotayeva, A. (2016). Study of tails enrichment factory Zhezkazgan as a technogenic ore deposits. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 579-586. https://doi.org/10.5593/sgem2016/b11/s01.073
- Baibatsha, A., Dussembayeva, K., Bekbotayeva, A., & Abdullayeva, М.T. (2018). Tails of enrichment factories as the technogenic mineral resources. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 519-526. https://doi.org/10.5593/sgem2018/1.1/s01.066
- Zeilik, B., & Seitmuratova, E. (1974). Meteoritic structure in Central Kazakhstan and its magma-ore-controlling role. Doklady Akademii Nauk SSSR, (218), 167-170.
- Zeĭlik, B. (1991). Udarno-vzryvnai︠a︡ tektonika i kratkiiy ocherk tektoniki plit. Alma-Ata, Kazakhstan: Gylym, 120 s.
- Zeilik, B.S., & Kadyrov, D.R. (2010). The new technology of forecasting mineral deposits based on remote sensing. 1st EAGE International Geosciences Conference on Kazakhstan. https://doi.org/10.3997/2214-4609.20145707
- Seitmuratova, E.Yu., Zeylik, B.S., Dautbekov, D.O., & Baratov, R.T. (2018). Forecast of metallic mineral resource deposits based on the principles of shock-explosive tectonics and use of the earth remote sensing data. News of National Academy of Sciences of the Republic of Kazakhstan, 6(432), 210-220. https://doi.org/10.32014/2018.2518-170x.51
- Zeilik, B. (2002). The Zeilik prospect area prediction method in search for metal deposits. Patent No. 12039, Republic of Kazakhstan.
- Sokolov, B., & Starostin, V. (1997). Flyuidodinamicheskaya kontseptsiya obrazovaniya mestorozhdenii poleznykh iskopaemykh (uglevodorodnykh, metallicheskikh i nemetallicheskikh). Smirnovskii Sbornik, 99-147.
- Osinski, G.R., Lee, P., Parnell, J., Spray, J.G., & Baron, M. (2005). A case study of impact-induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science, 40(12), 1859-1877. https://doi.org/10.1111/j.1945-5100.2005.tb00150.x
- Pirajno, F. (2005). Hydrothermal processes associated with meteorite impact structures: evidence from three Australian examples and implications for economic resources. Australian Journal of Earth Sciences, 52(4-5), 587-605. https://doi.org/10.1080/08120090500170468
- Saul, J. (2018). Circular scars dating to the Earth’s accretionary period. Energy Procedia, (146), 12-16. https://doi.org/10.1016/j.egypro.2018.07.003
- Laverov, N. (2008). Izmenenie okruzhayuushhey sredy i klimata: prirodnye i svнazannye s nimi tehnogennye katastrofy. Moskva, Rossiya: IFZ RAN, 198 s.
- Vishnevskiy, С. (2007). Astroblemy. Novosibirsk: Nonparel’, 286 s.
- Kouda, R., & Koide, H. (1978). Ring structures, resurgent cauldron, and ore deposits in the Hokuroku Volcanic Field, Northern Akita, Japan. Mining Geology, 28(150), 233-244. https://doi.org/10.11456/shigenchishitsu1951.28.233
- Stazhevskii, S.B. (2004). Ring structures as a contribution to the genesis and stress-strain state of mineral deposits. Journal of Mining Science, 40(3), 259-264. https://doi.org/10.1007/s10913-005-0005-4
- Mamedov, E.A., Ahmed, E.S., & Chiragov, M.I. (2013). Copper-Gold-Sulphide mineralization associated with late precambrian volcanic ring structures, Southern Sinai, Egypt. Arabian Journal for Science and Engineering, 39(1), 273-286. https://doi.org/10.1007/s13369-013-0854-0
- Winkler, R., Poelchau, M.H., Moser, S., & Kenkmann, T. (2016). Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs. Meteoritics & Planetary Science, 51(10), 1849-1870. https://doi.org/10.1111/maps.12694
- Schmieder, M., Seyfried, H., & Gerel, O. (2013). The circular Uneged Uul structure (East Gobi Basin, Mongolia) – Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target? Journal of Asian Earth Sciences, (64), 58-76. https://doi.org/10.1016/j.jseaes.2012.11.042
- Korobeinikov, A.N., Mitrofanov, F.P., Gehor, S., Laajoki, K., Pavlov, V.P., & Mamontov, V.P. (1998). Geology and copper sulphide mineralization of the Salmagorskii ring igneous complex, Kola Peninsula, NW Russia. Journal of Petrology, 39(11-12), 2033-2041. https://doi.org/10.1093/petroj/39.11-12.2033
- Kovalenko, V.I., & Yarmolyuk, V.V. (1995). Endogenous rare metal ore formations and rare metal metallogeny of Mongolia. Economic Geology, 90(3), 520-529. https://doi.org/10.2113/gsecongeo.90.3.520
- Reimold, W.U., Koeberl, C., Gibson, R.L., & Dressler, B.O. (2005). Economic mineral deposits in impact structures: A review. Impact Tectonics, 479-552. https://doi.org/10.1007/3-540-27548-7_20
- Gebhardt, A., Niessen, F., & Kopsch, C. (2006). Central ring structure identified in one of the world's best-preserved impact craters. Geology, 34(3), 145. https://doi.org/10.1130/G22278.1
- Kovaleva, E., Huber, M.S., Roelofse, F., Tredoux, M., & Praekelt, H. (2018). Pseudotachylite vein hosted by a clast in the Vredefort Granophyre: characterization, origin and relevance. South African Journal of Geology, 121(1), 51-68.https://doi.org/10.25131/sajg.121.0002
- Masaitis, V.L., Petrov, O.V., & Naumov, M.V. (2018). Impact lithologies – a key for reconstruction of rock-forming processes and a geological model of the Popigai crater, northern Siberia. Australian Journal of Earth Sciences, 66(1), 81-94.https://doi.org/10.1080/08120099.2018.1509372
- Zeilik, B.S., & Baratov, R.T. (2016). Cosmic bombardment and the problem of protecting the planet to sustain life on Earth. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(416), 52-70.
- Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., & Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43.https://doi.org/10.25018/0236-1493-2019-05-0-34-43
- Abdiev, A.R. (2002). Evaluation of the stressed-strained state of rock massif for brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 70-72.
- Mendygaliyev, A., Arshamov, Y., Selezneva, V., Yazikov, E., & Bekbotayeva, A. (2021). Prospects for application of multi-spectral earth sensing data in forecasting and searching for reservoir-infiltration uranium deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(446), 90-97.
- Seitmuratova, E.Y., Goryaeva, V.S., Arshamov, Y.K., Baratov, R.T., Dautbekov, D.O., Saidasheva, F.F., & Seitzhanov, S.A. (2019). Results of survey works on gold mineralization revaluation for the Zhungar-Balkhash fold belt. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(433), 206-215.
- Abdykaparov, C.M., & Abdiev, A.R. (2002). State and prospects of the development the brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 16-19.
- Glikson, A. (2018). Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events. Tectonophysics, (722), 175-196. https://doi.org/10.1016/j.tecto.2017.11.003
- Glikson, A.Y., & Pirajno, F. (2018). Ring and dome features, possible and probable impact structures. Modern Approaches in Solid Earth Sciences, 123-156.https://doi.org/10.1007/978-3-319-74545-9_5
- Schulz, T., Sackl, F., Fragner, E., Luguet, A., van Acken, D., & Abate, B. (2020). The Zhamanshin impact structure, Kazakhstan: A comparative geochemical study of target rocks and impact glasses. Geochimica et Cosmochimica Acta, (268), 209-229.https://doi.org/10.1016/j.gca.2019.08.045
- Bekzhanov, G. (1996). Geologicheskaya karta Kazakhstana, masshtab 1:1000000. Almaty, Kazakhstan: Ministerstvo geologii i okhrany nedr Respubliki Kazakhstan.
- Baibatsha, A., Arshamov, Y., Bekbotayeva, A., & Baratov, R. (2017). Geology of the main industrial types of copper ore deposits in Kazakhstan. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (11), 231-238. https://doi.org/10.5593/sgem2017/11/s01.029
- Satpayeva, M. (2008). O mantiinykh plyumakh. O proyavleniyakh plyumov v poverkhnostnykh strukturakh i uchastkakh lokalizatsii orudeneniya. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology, (1), 15-24.
- Daukeev, S. (1997). Karta lokal’nykh anomalii sily tyazhesti Respubliki Kazakhstan 1:1000000 masshtaba. Almaty, Kazakhstan: Ministerstvo geologii i okhrany nedr Respubliki Kazakhstan.
- Uzhkenov, B., & Nikitchenko, I. (2003). Karta poleznyh iskopaemyh Kazahstana, masshtab 1:1000000. Almaty, Kazakhstan: Ministerstvo energetiki i mineral’nykh resursov Respubliki Kazakhstan.
- Kozlovskii, E. (1982). Kosmogeologicheskaya karta SSSR. Masshtab 1: 2500000. Moskva, Rossiya: Aerogeologiya.