Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

New theory for the rock mass destruction by blasting

Maksym Kononenko1, Oleh Khomenko1

1Dnipro University of Technology, Dnipro, 49005, Ukraine


Min. miner. depos. 2021, 15(2):111-123


https://doi.org/10.33271/mining15.02.111

Full text (PDF)


      ABSTRACT

      Purpose. To develop a new theory for the rocks destruction by blasting using a description of the formation processes of zones with various mass state around the charging cavity.

      Methods. The new theory for the rock mass destruction by blasting has been developed based on the use of the well-known elasticity theory laws and the main provisions of the quasi-static-wave hypothesis about the mechanism of a solid medium destruction under the blasting action. The models of zones of crumpling, intensive fragmentation and fracturing that arise around the charging cavity in the rock mass during its blasting destruction, depending on the physical and mechanical pro-perties of the rock mass, the energy characteristics of explosives and the rock pressure impact, have been developed using the technique of mathematical modeling.

      Findings. Based on the mathematical modeling results of the blasting action in a solid medium, the mathematical models have been developed of the zones of crumpling, intensive fragmentation and fracturing, which are formed around the char-ging cavity in a monolithic or fractured rock mass.

      Originality. The rock mass destruction by blasting is realized according to the stepwise patterns of forming the zones of crumpling, intensive fragmentation and fracturing, which takes into account the physical and mechanical properties of the medium, the energy characteristics of explosives and the rock pressure impact.

      Practical implications. When using the calculation results in the mathematical modeling the radii of the zones of crumpling, intensive fragmentation and fracturing in the rock mass around the charging cavity, it is possible to determine the rational distance between the blasthole charges in the blasting chart, as well as to calculate the line of least resistance for designing huge blasts.

      Keywords: rock mass, charging cavity, explosive, fragmentation zone


      REFERENCES

  1. Khomenko, O.E., & Kononenko, M.N. (2018). Safe development of the decorative jaspilites in the energetically disturbed massifs. Bezopasnost’ Truda v Promyshlennosti, (8), 15-23. http://doi.org/10.24000/0409-2961-2018-8-15-23
  2. Khomenko, O.E., Kononenko, M.N., & Lyashenko, V.I. (2019). Safe mining of granites at the manganese ore deposits of Ukraine. Bezopasnost’ Truda v Promyshlennosti, (1), 53-61. http://doi.org/10.24000/0409-2961-2019-1-53-61
  3. Kozyrev, S.A., Vlasova, E.A., & Sokolov, A.V. (2020). Estimation of factual energetics of emulsion explosives by experimental detonation velocity test data. Gornyi Zhurnal, (9), 47-53. http://doi.org/10.17580/gzh.2020.09.06
  4. Kholodenko, T., Ustimenko, Y., Pidkamenna, L., & Pavlychenko, A. (2014). Ecological safety of emulsion explosives use at mining enterprises. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 255-260. http://doi.org/10.1201/b17547-45
  5. Mironova, I., & Borysovs’ka, O. (2014). Defining the parameters of the atmospheric air for iron ore mines. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 333-339. http://doi.org/10.1201/b17547-57
  6. Myronova, I. (2015). The level of atmospheric pollution around the iron-ore mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 193-197. http://doi.org/10.1201/b19901-35
  7. Gorova, A., Pavlychenko, A., & Kholodenko, T. (2013). Prospects for the bioindication methods implementation in the environmental management system of industrial enterprises. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 83-84. http://doi.org/10.1201/b16354-15
  8. Kholodenko, T., Ustimenko, Y., Pidkamenna, L., & Pavlychenko, A. (2015). Technical, economic and environmental aspects of the use of emulsion explosives by ERA brand in underground and surface mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 211-219. http://doi.org/10.1201/b19901-38
  9. Guang, Wang Xu. (1994). Emulsion explosives. Beijing, China: Metallurgical Industry Press, 388 p.
  10. Krysin, R.S., Ishchenko, N.I., Klimenko, V.A., Piven, V.A., & Kuprin, V.P. (2004). Explosive ukranit-PM-1: Equipment and fabrication technology. Gornyi Zhurnal, (8), 32-37.
  11. Drukovanyy, M.F., Kuts, V.S., & Il’in, V.I. (1980). Upravlenie deystviem vzryva skvazhinnykh zaryadov na kar’yerakh. Moskva, Rossiya: Nedra, 223 s.
  12. Kazakov, N.N. (1975). Vzryvnaya otboyka rud skvazhinnymi zaryadami. Moskva, Rossiya: Nedra, 191 s.
  13. Komir, V.M., Kuznetsov, V.M., Vorob’yev, V.V., & Chebenko, V.N. (1988). Povyshenie effektivnosti deystviya vzryva v tverdoy srede. Moskva, Rossiya: Nedra, 209 s.
  14. Efremov, E.I., & Petrenko, V.D. (1984). Mekhanika vzryvnogo razrusheniya porod razlichnoy struktury. Kiev, Ukraina: Naukova dumka, 192 s.
  15. Sukhanov, A.F. (1950). Teoriya deystviya zaryada v porode. Alma-Ata, Kazakhstan: Izd-vo AN KazSSR, 124 s.
  16. Sukhanov, A.F., & Kutuzov, B.N. (1963). Sovremennyy uroven’ tekhniki burovzryvnykh rabot i razrusheniya gornykh porod. Moskva, Rossiya: MGI, 80 s.
  17. Lavrent’yev, M.A., Kuznetsov, V.M., & Sher, E.N. (1960). O napravlennom metanii grunta pri pomoshchi VV. Problemy Mekhaniki i Teoreticheskoy Fiziki, (4), 49-50.
  18. Vlasov, O.E. (1957). Osnovy teorii deystviya vzryva. Moskva, Rossiya: VIA, 408 s.
  19. Demidyuk, G.P. (1956). O mekhanizme deystviya vzryva i svoystvakh vzryvchatykh veshchestv. Vzryvnoe Delo, (45/2), 20-35.
  20. Demidyuk, G.P. (1962). Sovremennye teoreticheskie predstavleniya o deystvii vzryva v srede. Burovzryvnye Raboty v Gornoy Promyshlennosti, 223-240.
  21. Belyaev, A.F., & Sadovskiy, M.A. (1952). O prirode fugasnogo i brizantnogo deystviya vzryva. Fizika Vzryva, (1), 3-19.
  22. Mosinets, V.N. (1976). Drobyashchee i seysmicheskoe deystvie vzryva v gornykh porodakh. Moskva, Rossiya: Nedra, 271 s.
  23. Anistratov, Yu.I. (1996). Energeticheskaya teoriya rascheta tekhnologii otkrytykh gornykh rabot. Gornyy Informatsionno-Analiticheskiy Byulleten’, (3), 20-29.
  24. Pokrovskiy, G.I., & Fedorov, I.S. (1957). Deystvie udara i vzryva v deformiruemykh sredakh. Moskva, Rossiya: Gosstroyizdat, 276 s.
  25. Pokrovskiy, G.I. (1980). Vzryv. Moskva, Rossiya: Nedra, 190 s.
  26. Mel’nikov, N.V. (1957). Razvitie gornoy nauki v oblasti otkrytoy razrabotki mestorozhdeniy v SSSR. Moskva, Rossiya: Ugletekhizdat, 92 s.
  27. Khanukaev, A.N. (1962). Energiya voln napryazheniy pri razrushenii porod vzryvom. Moskva, Rossiya: Gosgortekhizdat, 200 s.
  28. Drukovanyy, M.F. (1973). Metody upravleniya vzryvom na kar’yerakh. Moskva, Rossiya: Nedra, 416 s.
  29. Baum, F.A. (1963). Protsessy razrusheniya gornykh porod vzryvom. Vzryvnoe Delo, (52/9), 262-285.
  30. Baron, L.I., Dokuchaev, M.N., Vasil’yev, G.A., & Doronicheva, L.N. (1960). Vzryvnye raboty v gornorudnoy promyshlennosti. Moskva, Rossiya: Gosgortekhizdat, 182 s.
  31. Kutter, H.K. (1972). Failure mechanism of jointed rock. Rock Mechanics, 95-109. https://doi.org/10.1007/978-3-7091-4109-0_6
  32. Efremov, E.I., Kravtsov, V.S., Myachina, N.I., & Petrenko, V.D. (1987). Razrushenie gornykh porod energiey vzryva. Kiev, Ukraina: Naukova dumka, 264 s.
  33. Rzhevskiy, V.V., & Novik, G.Ya. (1984). Osnovy fiziki gornykh porod. Moskva, Rossiya: Nedra, 359 s.
  34. Mosinets, V.N., & Gorbacheva, N.P. (1972). A seismological method of determining the parameters of the zones of deformation of rock by blasting. Soviet Mining Science, 8(6), 640-647. https://doi.org/10.1007/bf02497586
  35. Saharan, M.R., & Mitri, H.S. (2007). Numerical procedure for dynamic simulation of discrete fractures due to blasting. Rock Mechanics and Rock Engineering, 41(5), 641-670. https://doi.org/10.1007/s00603-007-0136-9
  36. Rakishev, B.R. (1983). Prognozirovanie tekhnologicheskikh parametrov vzorvannykh porod na kar’yerakh. Alma-Ata, Kazakhstan: Nauka, 239 s.
  37. Rakishev, B.R. (2010). Opredelenie razmerov zon razrusheniya v massive porod pri skvazhinnykh zaryadakh drobleniya. Vzryvnoe Delo, (103/60), 53-65.
  38. Szuladzinski, G. (1993). Response of rock medium to explosive borehole pressure. Proceedings of the Fourth International Symposium on Rock Fragmentation by Blasting-Fragblast-4, 17-23.
  39. Andrievskii, A.P., Kutuzov, B.N., Matveev, P.F., & Nikolaev, Y.I. (1997). Formation of a crumpling zone in a rock mass blasted by columnar charges. Journal of Mining Science, 33(1), 31-36. https://doi.org/10.1007/bf02765425
  40. Andrievskij, A.P., Kutuzov, B.N., Matveev, P.E., & Nikolaev, Yu.I. (1997). On the crush zone formation in a rock massif under its blasting loading by column charges. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (1), 39-44.
  41. Djordjevic, N. (1999). Two-component of blast fragmentation. In Proceedings of the sixth international symposium on rock fragmentation by blasting-fragblast, 213-219.
  42. Kanchibotla, S.S., Valery, W., & Morrell, S. (1999). Modelling fines in blast fragmentation and its impact on crushing and grinding. In Explo’ 99 – A conference on rock breaking (pp. 137-144). The Australasian Institute of Mining and Metallurgy, Kalgoorlie, Australia.
  43. Esen, S., Onederra, I., & Bilgin, H. (2003). Modelling the size of the crushed zone around a blasthole. International Journal of Rock Mechanics and Mining Sciences, 40(4), 485-495. https://doi.org/10.1016/s1365-1609(03)00018-2
  44. Onederra, I., Esen, S., & Jankovic, A. (2004). Estimation of fines generated by blasting – applications for the mining and quarrying industries. Mining Technology, 113(4), 237-247. https://doi.org/10.1179/037178404225006191
  45. Chun-rui, L., Li-jun Kang, Qing-xing, Q., De-bing Mao, Quan-ming, L., & Gang, X. (2009). The numerical analysis of borehole blasting and application in coal mine roof-weaken. Procedia Earth and Planetary Science, 1(1), 451-459. https://doi.org/10.1016/j.proeps.2009.09.072
  46. Kuznetsov, V.A. (2010). Obosnovanie tekhnologii burovzryvnykh rabot v kar’yerakh i otkrytykh gorno-stroitel’nykh vyrabotkakh na osnove deformatsionnogo zonirovaniya vzryvaemykh ustupov. Moskva, Rossiya: MGGU, 225 s.
  47. Torbica, S., & Lapcevic, V. (2014). Rock breakage by explosives. European International Journal of Science and Technology, 3(2), 96-104.
  48. Torbica, S., & Lapčević, V. (2015). Estimating extent and properties of blast-damaged zone around underground excavations. Rem: Revista Escola de Minas, 68(4), 441-453. https://doi.org/10.1590/0370-44672015680062
  49. Grebenyuk, V.A., Pyzh’yanov, Ya.S., & Erofeev, I.E. (1983). Spravochnik po gornorudnomu delu. Moskva, Rossiya: Nedra, 816 s.
  50. Efremov, E.I., Petrenko, V.D., & Pastukhov, A.I. (1990). Prognozirovanie drobleniya gornykh massivov vzryvom. Kiev, Ukraina: Naukova dumka, 120 s.
  51. Adushkin, V.V., & Spivak, A.A. (1993). Geomekhanika krupnomasshtabnykh vzryvov. Moskva, Rossiya: Nedra, 319 s.
  52. Kexin, D. (1995). Maintenance of roadways in soft rock by roadway-rib destress blasting. China Coal Society, 20(3), 311-316.
  53. Kryukov, G.M., & Kosargin, A.P. (1998). Zakonomernosti formirovaniya zon melkodispersnogo drobleniya i radial’nogo treshchinoobrazovaniya pri kamufletnom vzryve sosredotochennogo zaryada v kvaziodnorodnoy srede. Vzryvnoe Delo, (91/48), 75-81.
  54. Andrievskii, A.P., Kutuzov, B.N., Matveev, P.F., & Nikolaev, Y.I. (1996). Formation of the blast crater in a rock mass blast-loaded by column charges. Journal of Mining Science, 32(5), 390-394. https://doi.org/10.1007/bf02046160
  55. Andrievskii, A.P., Kutuzov, B.N., Polovov, B.D., & Matveev, P.F. (1997). Influence of physical and mechanical properties and fissuring of a solid mass on the parameters of the resulting explosion funnel in breaking an exposed surface. Journal of Mining Science, 33(4), 345-347. https://doi.org/10.1007/bf02765853
  56. Andrievskij, A.P., Kutuzov, B.N., Polovov, B.D., & Matveev, P.F. (1997). Influence of physico-mechanical properties and massif jointing on parameters of formed explosion funnel during braking to exposed plane. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (4), 59-61.
  57. Hustrulid, W.A., & Iverson, S.R. (2013). A new perimeter control blast design concept for underground metal/nonmetal drifting applications. National Institute of Occupational Safety and Health. Report of Investigation, (9691), 79 p. https://doi.org/10.26616/nioshpub2013129
  58. Kutuzov, B.N., & Andrievskiy, A.P. (2002). Novaya teoriya i novye tekhnologii razrusheniya gornykh porod udlinennymi zaryadami vzryvchatykh veshchestv. Novosibirsk, Rossiya: Nauka, 96 s.
  59. Andrievskiy, A.P., & Kutuzov, B.N. (1998). Zakonomernost’ formirovaniya zon smyatiya i treshchinoobrazovaniya pri vozdeystvii na skal’nyy massiv energiey vzryva udlinennogo zaryada. Otkrytie No. 70. Moskva, Rossiya.
  60. Erofeev, I.E. (1977). Povyshenie effektivnosti burovzryvnykh rabot na rudnikakh. Moskva, Rossiya: Nedra, 308 s.
  61. Sukhanov, A.F., & Kutuzov, B.N. (1983). Razrushenie gornykh porod vzryvom. Moskva, Rossiya: Nedra, 344 s.
  62. Rodionov, V.N., Sizov, I.A., & Tsvetkov, V.M. (1968). Issledovanie razvitiya polosti pri kamufletnom vzryve. Vzryvnoe Delo, (64/21), 5-24.
  63. Johanson, K., & Person, P. (1973). Detonation of explosives. Moskva, Rossiya: MIR, 352 s.
  64. Darkov, A.V., & Shpiro, G.S. (1989). Soprotivlenie materialov. Moskva, Rossiya: Vysshaya shkola, 624 s.
  65. Fesik, S.P. (1982). Spravochnik po soprotivleniyu materialov. Kiev, Ukraina: Budivel’nik, 280 s.
  66. Persson, P.A., Holmberg, R., & Lee, J. (1993). Rock blasting and explosives engineering. Boca Raton, United States: CRC Press, 560 p.
  67. Samul’, V.I. (1982). Osnovy teorii uprugosti i plastichnosti. Moskva, Rossiya: Vysshaya shkola, 264 s.
  68. Shashenko, A.N., Surgay, N.S., & Parchevskiy, L.Ya. (1994). Metody teorii veroyatnostey v geomekhanike. Kiev, Ukraina: Tekhnika, 216 s.
  69. Shashenko, O.M., Tulub, S.B., & Sdvyzhkova, O.O. (2002). Deiaki zadachi statystychnoi heomekhaniky. Kyiv, Ukraina: Pulsary, 304 s.
  70. Lavrinenko, V.F., & Lysak, V.I. (1977). Metod opredeleniya nachal’nogo napryazhennogo sostoyaniya massivov skal’nykh gornykh porod. Razrabotka Rudnykh Mestorozhdeniy, (24), 16-20.
  71. Lavrinenko, V.F. (1978). Fizicheskie protsessy, formiruyushchie napryazhennoe sostoyanie massivov porod. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyy Zhurnal, (10), 50-54.
  72. Lavrinenko, V.F., & Lysak, V.I. (1979). Termodinamicheskiy metod rascheta nachal’nykh napryazheniy v massivakh porod i ego ispol’zovanie pri reshenii prakticheskikh zadach. Napryazhenno-Deformirovannoe Sostoyanie i Ustoychivost’ Skal’nykh Sklonov i Bortov Kar’yerov, 204-212.
  73. Lavrinenko, V.F., & Lysak, V.I. (1980). Napryazhennoe sostoyanie i fizicheskie svoystva porod v zonakh razgruzki vokrug gornykh vyrabotok. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyy Zhurnal, (10), 29-32.
  74. Lavrinenko, V.F., & Lysak, V.I. (1993). Fizicheskie protsessy v massive porod pri narushenii ravnovesiya. Izvestiya Vysshikh Uchebnykh Zavedeniy. GornyyZzhurnal, (1), 1-6.
  75. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54.
  76. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 241-245. https://doi.org/10.1201/b17547-43
  77. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 265-269. https://doi.org/10.1201/b19901-47
  78. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-32
  79. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes Du-ring Underground Mining, 147-150. https://doi.org/10.1201/b13157-26
  80. Khomenko, O.E., Kononenko, M.N., & Lyashenko, V.I. (2018). Safety improving of mine preparation works at the ore mines. Bezopasnost’ Truda v Promyshlennosti, (5), 53-59. https://doi.org/10.24000/0409-2961-2018-5-53-59
  81. Khomenko, O.Ye., Sudakov, А.К., Malanchuk, Z.R., & Malanchuk, Y.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34-43.
  82. Khomenko, O., Kononenko, M., Kovalenko, I., & Astafiev, D. (2018). Self-regulating roof-bolting with the rock pressure energy use. E3S Web of Conferences, (60), 00009. https://doi.org/10.1051/e3sconf/20186000009
  83. Khomenko, O., Kononenko, M., & Bilegsaikhan, J. (2018). Classification of theories about rock pressure. Solid State Phenomena, (277), 157-167.https://doi.org/10.4028/www.scientific.net/ssp.277.157
  84. Lavrinenko, V.F. (1992). Upravlenie sostoyaniem massiva gornykh porod pri podzemnoy razrabotke mestorozhdeniy. Kiev, Ukraina: UMK VO, 72 s.
  85. Khomenko, O., & Kononenko, M. (2019). Geo-energetics of Ukrainian crystalline shield. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 12-21. https://doi.org/10.29202/nvngu/2019-3/3
  86. Shashenko, A.N., Sdvizhkova, E.A., & Kuzhel’, S.V. (2004). Masshtabnyy effekt v gornykh porodakh. Donetsk, Ukraina: Nord-Press, 126 s.
  87. Fisenko, G.L. (1965). Ustoychivost’ bortov kar’yerov i otvalov. Moskva, Rossiya: Nedra, 378 s.
  88. Rats, M.V. (1973). Strukturnye modeli v inzhenernoy geologii. Moskva, Rossiya: Nedra, 216 s.
  89. Mosinets, V.N., & Abramov, A.V. (1982). Razrushenie treshchinovatykh i narushennykh gornykh porod. Moskva, Rossiya: Nedra, 248 s.
  90. Khomenko, O., Rudakov, D., & Kononenko, M. (2011). Automation of drill and blast design. Technical and Geoinformational Systems in Mining, 271-275. https://doi.org/10.1201/b11586-45
  91. Kononenko, M., Khomenko, O., Savchenko, M., & Kovalenko, I. (2019). Method for calculation of drilling-and-blasting operations parameters for emulsion explosives. Mining of Mineral Deposits, 13(3), 22-30. https://doi.org/10.33271/mining13.03.022
  92. Khomenko, O., Kononenko, M., Myronova, I., & Savchenko, M. (2019). Application of the emulsion explosives in the tunnels construction. E3S Web of Conferences, (123), 01039. https://doi.org/10.1051/e3sconf/201912301039
  93. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 231-235. https://doi.org/10.1201/b16354-43
  94. Falshtynskyi, V., Dychkovskyi, R., Khomenko, O., & Kononenko, M. (2020). On the formation of a mine-based energy resource complex. E3S Web of Conferences, (201), 01020. https://doi.org/10.1051/e3sconf/202020101020
  95. Lyashenko, V.I., & Khomenko, O.E. (2019). Enhancement of confined blasting of ore. Mining Informational and Analytical Bulletin, (11), 59-72. https://doi.org/10.25018/0236-1493-2019-11-0-59-72
  96. Лицензия Creative Commons