Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Studying the influence of the carbon dioxide injection period duration on the gas recovery factor during the gas condensate fields development under water drive

Serhii Matkivskyi1, Oleksandr Kondrat2

1JSC Ukrgasvydobuvannya, Ukrainian Scientific-Research Institute of Natural Gases, Kharkiv, 61010, Ukraine

2Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 76019, Ukraine


Min. miner. depos. 2021, 15(2):95-101


https://doi.org/10.33271/mining15.02.095

Full text (PDF)


      ABSTRACT

      Purpose. Studying the process of carbon dioxide injection at the boundary of the initial gas-water contact in order to slow down the formation water inflow into producing reservoirs and increase the final hydrocarbon recovery factors.

      Methods. To assess the influence on gas recovery factor of the duration of carbon dioxide injection period at the initial gas-water contact, a reservoir development is studied using the main Eclipse and Petrel hydrodynamic modeling tools of the Schlumberger company on the example of a hypothetical three-dimensional model of a gas-condensate reservoir.

      Findings. The dependence of the main technological indicators of reservoir development on the duration of the carbon dioxide injection period at the initial gas-water contact has been determined. It has been revealed that an increase in the duration of the non-hydrocarbon gas injection period leads to a decrease in the formation water cumulative production. It has been found that when injecting carbon dioxide, an artificial barrier is created due to which the formation water inflow into the gas-saturated intervals of the productive horizon is partially blocked. The final gas recovery factor when injecting carbon dioxide is 61.98%, and when developing the reservoir for depletion – 48.04%. The results of the research performed indicate the technological efficiency of carbon dioxide injection at the boundary of the initial gas-water contact in order to slow down the formation water inflow into producing reservoirs and increase the final hydrocarbon recovery factors for the conditions of a particular field.

      Originality. The optimal value of duration of the carbon dioxide injection period at the initial gas-water contact has been determined, which is 16.32 months based on the statistical processing of calculated data for the conditions of a particular field.

      Practical implications. The use of the results makes it possible to improve the existing technologies for the gas condensate fields development under water drive and to increase the final hydrocarbon recovery factor.

      Keywords: 3D model, hydrocarbon field, gas condensate reservoir, water drive, carbon dioxide injection


      REFERENCES

  1. Boyko, V.S., Kondrat, R.M., & Yaremiychuk, R.S. (1996). Dovidnyk z naftohazovoi spravy. Kyiv, Ukraina: Lviv, 620 s.
  2. Firoozabadi, A., Olsen, G., & Golf-Racht, V.T. (1987). Residual gas saturation in water-drive gas reservoir. SPE California Regional Meeting held in Ventura, California, 319-322. https://doi.org/10.2118/16355-ms
  3. Matkivskyi, S.V., Kondrat, O.R., & Khaydarova, L.I. (2020). Doslidzhennya vplyvu neznachnoho proyavu vodonapirnoyi systemy na dostovirnistʹ materialʹnoho balansu kolektoriv. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch, 2(75), 43-51. https://doi.org/10.31471/1993-9973-2020-2(75)-43-51
  4. Zavaleta, S., Adrian, P.M., & Michel, M. (2018). Estimation of OGIP in a water-drive gas reservoir coupling dynamic material balance and fetkovich aquifer model. SPE Trinidad and Tobago Section Energy Resources Conference. https://doi.org/10.2118/191224-ms
  5. Hower T.L., Bcrgeson I.E., Lewis D.R. and Owens R.W. (1992). Recovery optimization in a multi-reservoir offshore gas field with water influx. 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, 9-15. https://doi.org/10.2118/24865-ms
  6. Ancell, K.L., & Trousil, P.M. (1990). Remobilization of natural gas trapped by encroaching water’. 65th Annual Technical Conference and Exhibition of Society of Petroleum Engineers held in New Orleans, Louisiana, 375-381. https://doi.org/10.2118/20753-ms
  7. Matthew, J.D., Hawes, R.I., & Lock, T.P. (1988). Feasibility studies of water flooding gas condensate reservoir. Journal of Petroleum Technology, 40(08), 1049-1056. https://doi.org/10.2118/15875-pa
  8. Calgle, T.О. (1990). Performance of secondary gas recovery operations: north Alazan H-21 reservoir. 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in New Orleans, Louisiana, 508-513. https://doi.org/10.2118/20771-ms
  9. Rogers, L.A. (1984). Test of secondary gas recovery by coproduction of gas and water from Mt. Selman Field, Texas’. Unconventional Gas Recovery Symposium, 331-335. https://doi.org/10.2118/12865-ms
  10. Arco, D.P., & Bassiouni, Z. (1987). The technical and economic feasibility of enhanced gas recovery in the Eugene Island Field by use of coproduction technique, Louisiana State University. Journal of Petroleum Technology, 39(05).https://doi.org/10.2118/14361-pa
  11. Zakirov, S., Zakirov, I., & Batanova, M. (2006). Novye printsipy i tekhnologii razrabotki mestorozhdeniy nefti i gaza. Moskva-Izhevsk, Rossiya: Institut komp’yuternykh tekhnologiy, 520 s.
  12. Zakirov, S. (1998). Razrabotka gazovykh, gazokondensatnykh i neftegazokondensatnykh mestorozhdeniy. Moskva, Rossiya: Struna, 628 s.
  13. Zakirov, S. (1980). Teoriya i proyektirovanie razrabotki gazovykh i gazokondensatnykh mestorozhdeniy. Moskva, Rossiya: Nedra, 334 s.
  14. Zakirov, S. (2000). Sovershenstvovanie tekhnologii razrabotki mestorozhdeniy nefti i gaza. Moskva, Rossiya: Graal, 643 s.
  15. Rczaee, M., Rostami, B., & Mojarad, M. (2013). Experimental determination of optimized production rate and its upscaling analysis in strong water drive gas reservoirs. International Petroleum Technology Conference, 1-11. https://doi.org/10.2523/IPTC-16938-Abstract
  16. Ter-Sarkisov, R.M. (2006). Tekhnologiya zakachki azota dlya dobychi zashchemlennogo i nizkonapornogo gaza. Gazovaya Promyshlennost’, (4), 24-26.
  17. Yeske, G.A., & Volik, A.I. (2015). Issledovaniye vliyaniya zakachki vykhlopnykh gazov na koeffitsiyent izvlecheniya kondensata. Neftegazovoye Delo, 13(2), 94-99.
  18. Sim, S.S.-K., Brunelle, P., Turta, A.T., & Singhal, A.K. (2008). Enhanced gas recovery and CO2 sequestration by injection of exhaust gases from combustion of bitumen. SPE Symposium on Improved Oil Recovery. https://doi.org/10.2118/113468-ms
  19. Sim, S.S.K., Turta, A.T., Singhal, A.K., & Hawkins, B.F. (2008). Enhanced gas recovery: factors affecting gas-gas displacement efficiency. Canadian International Petroleum Conference. https://doi.org/10.2118/2008-145
  20. Matkivskyi, S.V., & Kondrat, O.R. (2020). Doslidzhennia efektyvnosti nahnitannia riznoho rodu nevuhlevodnevykh haziv na mezhi pochatkovoho hazovodianoho kontaktu. Abstracts of VII International Scientific and Practical Conference, 22-24.https://doi.org/10.46299/ISG.2020.II.VII
  21. Kondrat, O., & Matkivskyi, S. (2020). Research of the influence of the pattern arrangement of injection wells on the gas recovery factor when injecting carbon dioxide into reservoir. Technology and System of Power Supply, 5/1(55), 12-17. https://doi.org/10.15587/2706-5448.2020.215074
  22. Jikich, S.A., Smith, D.H., Sams, W.N., & Bromhal, G.S. (2003). Enhanced gas recovery (EGR) with carbon dioxide sequestration: A simulation study of effects of injection strategy and operational parameters. SPE Eastern Regional Meeting. https://doi.org/10.2118/84813-ms
  23. Mamora, D.D., & Seo, J.G. (2002). Enhanced gas recovery by carbon dioxide sequestration in depleted gas reservoirs. SPE Technical Conference and Exhibition, 1-9. https://doi.org/10.2118/77347-ms
  24. Oldenburg, С.M., Law, D.H., Gallo, Y.L., & White, S.P. (2003). Mixing of CO2 and CH4 in gas reservoirs: Code comparison studies. Greenhouse Gas Control Technologies – 6th International Conference, 443-448.
  25. Turta, A.T., Sim, S.S.K., Singhai, A.K., & Hawkins, B.F. (2008). Basic investigations on enhanced recovery by gas – gas displacement. Journal of Canada Petroleum Technology, 47(10), 1-6. https://doi.org/10.2118/08-10-39
  26. Matkivskyi, S., Kondrat, O., & Burachok, O. (2020). Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development. Global Trends, Challenges and Horizons, 1-10. https://doi.org/10.1051/e3sconf/202123001011
  27. Al-Hashami, A., Ren, S.R., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage reservoir simulation and economics. SPE Europec/EAGE Annual Conference and Exhibition, 1-7. https://doi.org/10.2118/94129-ms
  28. Akindele, F., & Tiab, D. (1982). Enhanced gas recovery from water-drive reservoirs – methods and economics. 57th Annual Fall Technical Conference and Exhibition of Society of Petroleum Engineers, 1-6. https://doi.org/10.2118/11104-ms
  29. Burachok, O.V., Pershyn, D.V., Matkivskyi, S.V., Bikman, Ye.S., & Kondrat, O.R. (2020). Osoblyvosti vidtvorennia rivniannia stanu hazokondensatnykh sumishei za umovy obmezhenoi vkhidnoi informatsii. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch, 1(74), 82-88. https://doi.org/10.31471/1993-9973-2020-1(74)-82-88
  30. Burachok, O.V., Pershyn, D.V., Matkivskyi, S.V., & Kondrat, O.R. (2020). Doslidzhennia mezhi zastosuvannia PVT-modeli “chornoi nafty” dlia modeliuvannia hazokondensatnykh pokladiv. Mineral’ni Resursy Ukrayiny, (2), 43-48. https://doi.org/10.31996/mru.2020.2.43-48
  31. Лицензия Creative Commons