Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Development of composition of cementing slurry for fastening of low-cemented rocks

Roman Kondrat1, Natalia Dremliukh1, Liliya Khaidarova1

1Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 76019, Ukraine


Min. miner. depos. 2021, 15(2):82-88


https://doi.org/10.33271/mining15.02.082

Full text (PDF)


      ABSTRACT

      Purpose. Improving the producing capacity and ensuring the stable operation of gas wells that develop unstable, low-cemented reservoirs by preventing the sand entry from the reservoir by means of creating the cement stone with the corresponding values of strength and permeability in the bottomhole formation zone.

      Methods. The technological characteristics of the cementing slurry and the formed cement stone are measured using standard recording equipment. The cementing slurry consistency is measured with a pycnometer, the cement mixture spread ability – using AzNII cone, water separation is measured according to standard methods (DSTU BV.2.7 – 86-99), and the time of the cementing slurry hardening is determined on a consistometer KTS-3. The ultimate parameters of the stone strength during bending are determined on a special device for testing linear objects in tension, and compression – on a PSU-10 hydraulic press.

      Findings. The cementing slurry composition for creating the cement stone with the corresponding values of compression strength and gas permeability in the bottomhole formation zone has been developed, which includes oilwell cement, expanded perlite, non-ionic surfactant, plasticizer and water. Dependences of the cement stone compression strength and the stone permeability coefficient on the proportion of expanded perlite in the cementing slurry solution have been revealed. It is recommended to use the proposed cementing slurry for creating a cement stone with specified values of compression strength and permeability in the expanded well shaft in the interval of the producing reservoir.

      Originality. The optimal proportion of the expanded perlite in the solution has been found, at which the corresponding values of the compression strength (up to 4 MPa) and gas permeability (up to 3.47 μm2) of the cement stone is provided.

      Practical implications. When using the developed composition, it is possible to increase the yield of wells with unstable reservoirs and improve their working conditions by preventing the sand entry from the reservoir into the well.

      Keywords: well, reservoir, gas, sand plug, cement stone, stone strength, gas permeability, filler material


      REFERENCES

  1. Oliveira, S., Oliveira, A., Guimaraes, L., Gomes, I., & Filho, O. (2020). Analysis of geomechanical behavior of carbonate rock fractures. 54th U.S. Rock Mechanics/Geomechanics Symposium, ARMA-2020-1757.
  2. Malyukov, V., & Starovoytova, Yu. (2018). Sovershenstvovanie tehnologiy ogranicheniya vyinosa chastits porodyi pri razrabotke mestorozhdeniy uglevodorodov. Gornyy Informatsionno-Analiticheskiy Byulleten’, (3), 61-68.
  3. Kondrat, R., Dremliukh, N., & Uhrynovskyi, A. (2017). Doslidzhennia protsesu pinoutvorennia z vykorystanniam vodnykh rozchyniv pinotvornykh par i stabilizatoriv piny. Naukovyi Visnyk NHU, (3), 20-26.
  4. Babazade. E. (2011). Rol intellektualnyih skvazhin v osuschestvlenii kontrolya nad peskoproyavleniem. Nauchnye Trudy NIPI Neftegaz GNKAR, (3), 39-43.
  5. Lezhnev, K. (2018). Application of discrete element method for modelling sand control systems (Russian). SPE Russian Petroleum Technology Conference. https://doi.org/10.2118/191525-18rptc-ru
  6. Grigorev, B., Tananykhin, S., & Poroshin, A. (2020). Sand management approach for a field with high viscosity oil. Journal of Applied Engineering Science, 18(1), 64-69. https://doi.org/10.5937/jaes18-24541
  7. Mihaylov, A., Volgin, V., Yagudin, R., Strizhnev, V., & Ragulin, V. (2010). Kompleksnaya zaschita skvazhinnogo oborudovaniya pri peskoproyavlenii v OOO “RN-Purneftegaz”. Territoriya Neftegaz, (12), 84-89.
  8. Salah, M., Abdel-Meguid, A., Abdel-Baky, A., & El-Maghraby, O. (2016). A newly developed aqueous-based consolidation resin controls proppant flowback and aids in maintaining production rates in fracture-stimulated wells. Day 1 Mon, September 26. https://doi.org/10.2118/181297-ms
  9. Banganayi, F., Nyembwe, K., & Polzin, H. (2017). Effects of South African silica sand properties on the strength development and collapsibility of single component sodium silicate binders. Archives of Foundry Engineering, 17(3), 5-12. https://doi.org/10.1515/afe-2017-0081
  10. Kaushanskiy, D., Dmitrievskiy, A., Demyanovskiy, V., & Tsitsorin, A. (2015). Fiziko-khimicheskie i reologicheskie svoystva sostava “IPNG-PLAST 2” dlya ogranicheniya vynosa mekhanicheskikh primesey v neftyanykh skvazhinah. Neftyanoe Khozyaystvo, (4), 84-87.
  11. Tananykhin, D., Tcvetkov, P., & Kamoza, V. (2018). Analysis and recommendations of sand consolidation methods to limit sand production in gas wells. Journal of Physics: Conference Series, (1072), 012022. https://doi.org/10.1088/1742-6596/1072/1/012022
  12. Kunitskikh, A. (2016). Study of cement slurry modifying agents. Oil Industry Journal, 1-9.
  13. Sandhu, A.R., Rind, T.A., Kalhoro, S.A., Lohano, R., & Laghari, F.H. (2019). Effect on the compressive strength of mortars using ground granulated blast furnace slag as a partial replacement of cement. Journal of Applied Engineering Sciences, 9(2), 183-186. https://doi.org/10.2478/jaes-2019-0025
  14. Da Silva Araujo Filho, R.G., de Oliveira Freitas, J.C., de Freitas Melo, M.A., & Braga, R.M. (2018). Lightweight oil well cement slurry modified with vermiculite and colloidal silicon. Construction and Building Materials, (166), 908-915. https://doi.org/10.1016/j.conbuildmat.2017.12.243
  15. Oreshkin, D., Semenov, V., & Rozovskaya, T. (2014). Oblegchennye tamponazhnye rastvory s protivomoroznymi dobavkami dlya usloviy mnogoletnemerzlykh porod. Neftyanoe Khozyaystvo, (4), 42-45.
  16. Lim, J., Raman, S., Safiuddin, M., Zain, M., & Hamid, R. (2019). Autogenous shrinkage, microstructure, and strength of ultra-high performance concrete incorporating carbon nanofibers. Materials, 12(2), 320. https://doi.org/10.3390/ma12020320
  17. Kazimov, S.P., & Ahmed, F. (2015). Sand control in the wells of SOCAR oilfields. All Days.https://doi.org/10.2118/177338-ms
  18. Gadzhiev, A., & Tolepbergenov, E. (2015). Promyslovye ispytaniya novogo sostava dlya krepleniya slabostsementirovannykh porod prizaboynoy zony skvazhin. Nauchnye Trudy, (4), 31-35.
  19. Kondrat, R., Dremlyuh, N., & Kovalchuk, Yu. (2017). Sklad dlia kriplennia nestiikykh porid kolektoriv. Patent No. 113026, Ukraina.
  20. DSTU BV.2.7 – 86-99. (2000). Tsementy tamponazhni. Metody vyprobuvan. Kyiv, Ukraina: Derzhavnyi komitet budivnytstva, 21 s.
  21. Лицензия Creative Commons