Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Geomechanics substantiation of pillars development parameters in case of combined mining the contiguous steep ore bodies

Daulet Takhanov1, Berikbol Muratuly1, Zhuldyz Rashid1, Adilzhan Kydrashov1

1Karaganda Technical University, Karaganda, 100027, Kazakhstan


Min. miner. depos. 2021, 15(1):50-58


https://doi.org/10.33271/mining15.01.050

Full text (PDF)


      ABSTRACT

      Purpose. Determining the actual dimensions of the protecting and crown pillars of ore bodies by seismic survey and assessing the possibility of rock mass collapse and fracturing at the lower levels of the Zhairemskoye field.

      Methods. An integrated approach is used, which involves the analysis of complete ore bodies development during the combined mining. To determine the geological strength index (GSI) and rock mass rating (RMR), the mass structure is studied, as well as the survey is executed of rock fracturing on the contours of mine workings at levels of +288, +240, +192, +144 m. In addition, the physical and mechanical properties of rocks are refined using the RocLab software. Using the numerical modelling of the self-caving process, when mining the protecting and crown pillars, the processed results of numerical modelling are analysed and the possible zones of the mass deformation are assessed based on the Phase2 software.

      Findings. It has been determined that during the mining of ore bodies 4 and 6, protecting pillars between the quarry and the underground mine, crown pillars between the levels up to the level of +144 m, the rock displacements are possible along glide surfaces. It has been revealed that the haulage workings of levels +240 and +192 m fall into the zone of possible displacements influence, and the rock pillar between ore bodies 4 and 6 will be exposed to inelastic deformations during the mining of crown pillars to the level of +144 m. It has been found that after the crown pillar development between the levels of +240 and +192 m for ore body 6, the rock pillar destructions are possible between ore bodies 4 and 6, since during the modelling, displacements of more than 2 mm are observed. In this case, the destruction processes are possible in the rock pillar upper part.

      Originality.A geomechanical assessment of the rocks tendency to caving is given and problem areas of stability during the mining of ore bodies 4 and 6 in the Zhairemskoye field are identified.

      Practical implications. The stable parameters of protecting and crown pillars have been substantiated, which is an important aspect in the design/efficient technology of mining the contiguous ore bodies.

      Keywords: engineering seismic, ore body, pillar, level, iron, manganese


      REFERENCES

  1. Kazikaev, D.M. (2009). Geomekhanika podzemnoy razrabotki rud. Moskva, Rossiya: MGGU, 542 s.
  2. Agoshkov, M.I., & Malakhov, G.M. (1966). Podzemnaya razrabotka rudnykh mestorozhdeniy. Moskva, Rossiya: Nedra, 659 s.
  3. Kaplunov, D.R., Ryl’nikova, M.V., Kalmykov, V.N., Petrov, Yu.A., & Suslov, V.A. (2005). Kombinirovannaya geotekhnologiya pri osvoenii almazonosnogo mestorozhdeniya trubki “Udachnaya”. Gornaya Promyshlennost’, (4), 1250.
  4. Volkov, P.V. (2012). Obosnovanie tekhnologii vyemki prirodno-tekhnogennykh zapasov na granitse kar’yerov pri kombinirovannoy razrabotke mednokolchedannykh mestorozhdeniy. PhD Thesis. Magnitogorsk, Rossiya: MGTU, 20 s.
  5. Zhang, J., Wang, Z., & Song, Z. (2020). Numerical study on movement of dynamic strata in combined open-pit and underground mining based on similar material simulation experiment. Arabian Journal of Geosciences, 13(16).https://doi.org/10.1007/s12517-020-05766-0
  6. Yu, S., Xu, J., Zhu, W., Wang, S., & Liu, W. (2020). Development of a combined mining technique to protect the underground workspace above confined aquifer from water inrush disaster. Bulletin of Engineering Geology and the Environment, 79(7), 3649-3666. https://doi.org/10.1007/s10064-020-01803-0
  7. Sladkowski, A., Utegenova, A., Elemesov, K., & Stolpovskikh, I. (2017). Determining of the rational capacity of a bunker for cyclic-and-continuous technology in quarries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29-33.
  8. Rysbekov, K., Toktarov, A., Kalybekov, T., Moldabayev, S., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, (168), 00016. https://doi.org/10.1051/e3sconf/202016800016
  9. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, (201), 01039. https://doi.org/10.1051/e3sconf/202020101039
  10. Abdykaparov, C.M., & Abdiev, A.R. (2002). State and prospects of the development the brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 16-19.
  11. Hoek, E., & Brown, E.T. (1997). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1165-1186. https://doi.org/10.1016/s1365-1609(97)80069-x
  12. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., & Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 58-64.
  13. Malkowski, P., & Ostrowski, L. (2019). Convergence monitoring as a basis for numerical analysis of changes of rock-mass quality and Hoek-Brown failure criterion parameters due to longwall excavation. Archives of Mining Sciences, 64(1), 93-118. https://doi.org/10.24425/ams.2019.126274
  14. Proekt promyshlennoy razrabotki mestorozhdeniya “Ushkatyn-3” kombinirovannym sposobom. (2013). Astana, Kazakhstan: TOO “KAZGenProekt-1”.
  15. Makarov, A.B. (2006). Prakticheskaya geomekhanika. Moskva, Rossiya: Gornaya kniga, 391 s.
  16. Bieniawski, Z.T. (1989). Engineering rock mass classifications. Hoboken, United States: John Wiley, 251 p.
  17. Deere, D.U. (1968). Geological considerations, rock mechanics in engineering practice (p. 1-20). New York, United States: Wiley.
  18. Hoek, E., Carranza-Torres, C.T., & Corkum, B. (2002). Hoek-Brown failure criterion – 2002 edition. Proceedings of the North American Rock Mechanics Society meeting in Toronto, 1-9.
  19. Hoek, E., & Diederichs, M.S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  20. Imashev, A.Zh., Bakhtybaev, N.B., Tileukhan, N., Zhunusbekova, G., & Zhakanov, K.K. (2013). Chislennoe modelirovanie geomekhanicheskikh protsessov s pomoshch’yu programmy “Phase 2”. Gornyy Zhurnal Kazakhstana, (7), 10-13.
  21. Imashev, A.Z., Suimbayeva, A.M., Abdibaitov, S.A., Musin, A.A., & Asan, S.Y. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. Ugol’, (06), 4-9. https://doi.org/10.18796/0041-5790-2020-6-4-9
  22. Rukovodstvo pol’zovatelya RocLab. Analiz prochnosti massiva gornykh porod na osnove kriteriya razrusheniya Khoeka-Brauna i Kulona-Mora. (2009). 20 s.
  23. Paizov, A.M. (2010). Kombinirovannaya otrabotka rudnykh tel s vklyucheniyami pustykh porod. Vestnik Zhalal-Abadskogo Gosudarstvennogo Universiteta, (1), 3-5.
  24. Nemova, N., Tаhanov, D., Hussan, B., & Zhumabekova, A. (2020). Technological development solutions for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 17-23. https://doi.org/10.33271/nvngu/2020-2/017
  25. Usenov, K.Zh. (1994). Opredelenie napryazhenno-deformirovannogo sostoyaniya massiva vokrug podzemnykh vyrabotok pri otrabotke sblizhennykh krutopadayushchikh rudnykh tel s uchetom vliyaniya otkrytykh gornykh rabot. PhD Thesis. Bishkek, Kirgiziya: IFMGP, 17 s.
  26. Rasskazov, I.Yu., & Miroshnikov, V.I. (2007). Prognozirovanie opasnykh proyavleniy gornogo davleniya na osnove trekhstadiynoy modeli razrusheniya gornykh porod. Gornyy Informatsionno-Analiticheskiy Byulleten’, (3), 234-240.
  27. Singh, B., & Goel, R. (1999). Rock mass classification. Amsterdam, the Netherlands: Elsevier, 267 p. https://doi.org/10.1016/B978-0-08-043013-3.X5000-7
  28. Imashev, A., Suimbayeva, A., Zholmagambetov, N., Takhanov, D., & Abdimutalip, N. (2018). Research of possible zones of inelastic deformation of rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(428), 177-184.
  29. Лицензия Creative Commons