Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Operational lifetime increase of the pumping equipment when pumping-out contaminated groundwater

Mykola Biloshytskyi1, Halyna Tatarchenko1, Nataliia Biloshytska1, Pavlo Uvarov1

1Volodymyr Dahl East Ukrainian National University, Severodonetsk, 93400, Ukraine


Min. miner. depos. 2021, 15(1):42-49


https://doi.org/10.33271/mining15.01.042

Full text (PDF)


      ABSTRACT

      Purpose. Solving the problem of increasing the pumping equipment operational lifetime when pumping-out contaminated groundwater in the iron-ore industry by extracting the hard, abrasive part, using magnetic filters based on permanent ferrite magnets.

      Methods. To produce spherical hard-magnetic ferrite elements that catch finely-dispersed magnetic and weakly-magnetic abrasive particles when pumping-out contaminated groundwater in the iron-ore industry, barium ferrite powder BaО∙6Fe2O3 is applied, which is usually used for obtaining hard-magnetic ferrites. Spherical elements for filling a magnetic filtering installation are obtained by the method of spheroidizing the barium ferrite powder in a dragee machine. Sintering of spherical granules obtained from barium ferrite powder is conducted in a high-temperature atmospheric electric box furnace. The sintered spherical elements made of hard-magnetic barium ferrite are magnetized using a magnetic pulsed toroidal-shaped setup in a pulsed constant magnetic field.

      Findings. For continuous pumping-out and purification of contaminated groundwater from magnetic, weakly-magnetic and non-magnetic highly abrasive particles with the help of magnetic filters, a scheme of a filtering installation of two sections is pro-posed. A technology for producing spherical permanent magnets from barium ferrite powder has been developed for a filtering installation, which includes a coarse purification column with hollow-spherical permanent magnets of 16-17 mm in diameter and a fine purification column with full-bodied spherical barium ferrite magnets of 6-7 mm in diameter.

      Originality.The term of pumping equipment operation is doubled if to eliminate abrasive wear due to the filtering two-section installation by filling with barium ferrite spherical magnets. In the case of changing the filter, idle time is reduced by using the supplementary auxiliary column. The possibility of processing filtration products and their use in the field of construction and metallurgy without environmental pollution is substantiated.

      Practical implications. The scheme of magnetic groundwater purification in the iron-ore industry is proposed, consisting of a filtering column of coarse and fine purification from abrasive particles. A technology for producing spherical magnets with different diameters has been developed to ensure the quality of the process. The research results allow to increase the operational lifetime of pumping equipment by eliminating abrasive wear, which will lead to significant savings in the replacement and repair of centrifugal pumps.

      Keywords: pumping equipment, groundwater, wear, barium ferrite, spherical magnet, filter, iron-ore industry


      REFERENCES

  1. Pivnyak, G., Samusia, V., Oksen, Y., & Radiuk, M. (2015). Efficiency increase of heat pump technology for waste heat recovery in coal mines. New Developments in Mining Engineering, 1-4.https://doi.org/10.1201/b19901-2
  2. Yelemessov, K., Krupnik, L., Bortebayev, S., Baskanbayeva, D., & Igbayeva, A. (2020). Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web of Conferences, (168), 00018. https://doi.org/10.1051/e3sconf/202016800018
  3. Krupnik, L., Yelemessov, K., Bortebayev, S., & Baskanbayeva, D. (2018). Studying fiber­reinforced concrete for casting housing parts of pumps. Eastern-European Journal of Enterprise Technologies, 6(12(96)), 22-27. https://doi.org/10.15587/1729-4061.2018.151038
  4. Dolganov, A., & Timukhin, S. (2016). Gidroabrazivnyy iznos rudnichnogo vodootliva. Moskva, Rossiya: Izdatel’skiy dom Akademii Estestvoznaniya.
  5. Yoganandh, J., Natarajan, S., & Kumaresh Babu, S. (2015). Erosive wear behavior of high-alloy cast iron and duplex stainless steel under mining conditions. Journal of Materials and Performance, 24(9), 3588-3598. https://doi.org/10.1007/s11665-015-1611-1
  6. Verichev, S., Mishakin, V., Nuzhdin, N., & Razov, E. (2015). Experimental study of abrasive wear of structural materials under the high hydrostatic pressure. Ocean Engineering, (99), 9-13. https://doi.org/10.1016/j.oceaneng.2015.03.001
  7. Akopov, E.Yu. (2016). Obosnovanie i vybor metodov povysheniya resursa pogruzhnykh tsentrobezhnykh nasosov. Ph.D. Thesis. Moskva, Rossiya: Natsional’nyy issledovatel’skiy tekhnologicheskiy universitet “MISiS”.
  8. Biloshytskyi, M., Tatarchenko, H., & Biloshytska, N. (2019). Restoration of the tribotechnical pairs in equipment of mining industry. Mining of Mineral Deposits, 13(3), 68-75. https://doi.org/10.33271/mining13.03.068
  9. Voynash, S.A., Gaydukova, P.A., & Markov, A.N. (2017). Rational route choosing methodology for machine parts restoration and repair. Procedia Engineering, (206), 1747-1752.https://doi.org/10.1016/j.proeng.2017.10.708
  10. Zhang, H., Zhang, X., Liu, Z., & Miao, Q. (2017). Understanding theories and methods on equipment operational reliability assessment. 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 367-370. https://doi.org/10.1109/sdpc.2017.76
  11. Povetkin, V., Kerimzhanova, M., Orlova, E., & Bukaeva, A. (2018). Sovershenstvovanie oborudovaniya dlya transportirovki gidrosmesi v obogatitelnom proizvodstve. Gornyy Informatsionno-Analiticheskiy Byulleten’, (6), 161-169. https://doi.org/10.25018/0236-1493-2018-6-0-161-169
  12. Ovchinnikov, N. (2018). Eksperimental’nye issledovaniya vliyaniya gidroabrazivnogo iznosa razlichnoy stepeni elementov rabochego kolesa na vibratsionnoe sostoyanie elektronasosnogo agregata. Gornyy Informatsionno-Analiticheskiy Byulleten’, (1), 158-165. https://doi.org/10.25018/0236-1493-2018-1-0-158-165
  13. Gusakov, V.G. (2017). Natsional’naya akademiya nauk Belorussii: entsiklopedicheskiy spravochnik. Minsk, Belarus: Belaruskaya navuka.
  14. Vinnik, D.A., Zherebtsov, D.A., Mashkovtseva, L.S., Nemrava, S., Bischoff, M., Perov, N.S., Semisalova, A.S., Krivtsov, I.V., Isayenko, L.I., Mikhailov, G.G., & Niewa, R. (2015). Growth, structural and magnetic characterization of al-substituted barium hexaferrite single crystals. Journal of Alloys and Compounds, (615), 1043-1046. https://doi.org/10.1016/j.jallcom.2014.07.126
  15. Vinnik, D.A. (2016). Production of barium lead hexaferrite single crystals from the flux. Bulletin of the South Ural State University. Series Metallurgy, 16(1), 7-12. https://doi.org/10.14529/met160101
  16. Varmazyar, A., Allahkaram, S.R., & Mahdavi, S. (2018). Deposition, characterization and evaluation of monolayer and multilayer Ni, Ni-P and Ni-P-Nano ZnOp coatings. Transactions of the Indian Institute of metals, 71(6), 1301-1309. https://doi.org/10.1007/s12666-018-1279-y
  17. Vlasova, E., Кovalenko, V., Kotok, V., & Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 33-39. https://doi.org/10.15587/1729-4061.2016.79559
  18. Biloshytskyi, M., Tatarchenko, H., Biloshytska, N., & Uvarov, P. (2017). Tekhnolohiia otrymannia poroshku midi z vidkhodiv promyslovosti. Naukovi Notatky, (59), 27-31.
  19. Beloshitskiy, N.V., & Beloshitskaya, N.I. (2016). Retsikling – put’ polucheniya novykh materialov i tekhnologiy v poroshkovoy metallurgii. Wschodnioeuropejskie Czasopismo Naukowe, 8(7), 5-10.
  20. Zinovik, M.A., & Zinovik, E.V. (2012). O forme petli magnitnogo gisterezisa toroidal'nykh ferritovykh elementov. Tekhnika v Silskohospodarskomu Vyrobnytstvi, Haluzeve Mashynobuduvannia, Avtomatyzatsiia, 25(1), 91-98.
  21. Piddubnyi, S.V., & Biloshytskyi, M.V. (2019). Zastosuvannia vidkhodiv vyrobnytstva dlia vyhotovlennia dorozhnoho tsementobetonu. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, 8(256), 57-61. https://doi.org/10.33216/1998-7927-2019-256-8-57-61
  22. Tsvik, G., Sandoval, I., Braun, U., & Farkhadi, A. (2006). Postoyannoe sovershenstvovanie tekhnologii pryamogo vosstanovleniya zheleza. Chernye Metally, (5), 17-20.
  23. Kirichenko, I.S., & Aleksakhin, A.V. (2016). Razvitie mirovogo i otechestvennogo proizvodstva zheleza pryamogo vosstanovleniya. Molodoy Uchenyy, (2), 85-90
  24. Лицензия Creative Commons