Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research into rock mass geomechanical situation in the zone of stope operations influence at the 10th Anniversary of Kazakhstan’s Independence mine

Azamat Matayev1, Ainash Kainazarova1, Ibatolla Arystan1, Yerkebulan Abeuov1, Arman Kainazarov2, Makhmed Baizbayev1 Vladimir Demin1, Muratbek Sultanov3

1Karaganda Technical University, Karaganda, 10009, Kazakhstan

2Ekibastuz Engineering and Technical Institute named after Academician K. Satpayev, Ekibastuz, 10008, Kazakhstan

3Aktobe Regional University named after K. Zhubanov, Aktobe, 10004, Kazakhstan


Min. miner. depos. 2021, 15(1):103-111


https://doi.org/10.33271/mining15.01.103

Full text (PDF)


      ABSTRACT

      Purpose. Predicting the stress-strain state (SSS) of the rock mass in the zone of stope operations influence using the self-caving mining system and the calculation of the load-bearing capacity of mine workings support at the 10th Anniversary of Kazakhstan’s Independence mine.

      Methods. An engineering-geological data complex of the host rocks properties has been analyzed. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the support types used at the mine have been performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the mass state. The Hoek-Brown model with its distinctive advantage of nonlinearity is used as a model for the mass behaviour.

      Findings. The values of the main stresses and load on the support have been obtained. According to the numerical analysis results of the rock mass stress-strain state at a depth of 900 m (horizon -480 m), the principal stresses are close to hydrosta-tic ones σ1 = σ2 = σz = 24.8 MPa. Predicting assessment of mine workings stability margin is performed before and after stope operations. Based on its results, it can be assumed that the stability margin of the mine workings driven in the stope zone is below the minimum permissible, therefore, caving and an increase in the load on the support are possible. Abutment pressure on mine workings support at a mining depth of 900 m (-480 m) has been calculated. The parameters of support in mine workings driven at the horizon -480 m have been calculated.

      Originality.The nature and peculiarities of patterns of the stress-strain state formation within the boundaries of various stope operations influence in blocks 20-28 at the horizon -480 m have been determined. The quantitative assessment of the values of loads on the support of haulage cross-cuts of the horizon mining is given.

      Practical implications. The research results can be used for creating a geomechanical model of the field and to design stable parameters of mine workings support.

      Keywords: stress-strain state, principal stresses, support, mine, ore, rock mass


      REFERENCES

  1. Arystan, I.D., Abeuov, E.A., & Abdrashev, R.M. (2019). Kreplenie gorizontal’nykh gornykh vyrabotok v usloviyakh shakht Donskogo GOKa. V Materialakh VIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennye Tendentsii i Innovatsii v Nauke i Proizvodstve”. Kemerovo, Rossiya: KuzGTU.
  2. Kuandykov, T., Nauryzbayeva, D., Yelemessov, K., Karmanov, T., Kakimov, U., & Kolga, A. (2020). Development and justification of a hydro-impulse method for increasing ore permeability in conditions of uranium borehole production. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, (6), 126-133.
  3. Sejtmuratova, E.J., Arshamov, J.K., Baratov, R.T., Dautbekov, D.O. (2016). Geological and metallogenic features of volcano-plutonic belt Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(416), 60-86.
  4. Seitmuratova, E., Arshamov, Y., Bekbotayeva, A., Baratov, R., & Dautbekov, D. (2016). Priority metallogenic aspects of late paleozioc volcanic-plutonic belts of Zhongar-Balkhash fold system. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 511-518. https://doi.org/10.5593/sgem2016/b11/s01.064
  5. Baizbaev, M.B., Abdrashev, R.M., Mataev, A.K. (2020). Tekhnologii provedeniya i krepleniya gornykh vyrabotok. Intellektual’naya Sobstvennost’, #8706.
  6. Griffiths, D.V., & Lane, P.A. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
  7. Kurlenya, M.V., & Popov, S.N. (1983). Teoreticheskie osnovy opredeleniya napryazheniy v gornykh porodakh. Novosibirsk, Rossiya: Nauka, SO RAN.
  8. Fanchi, J. R. (2018). Petroelastic modeling and geomechanical modeling. Principles of Applied Reservoir Simulation, 59-80. 0.1016/b978 https://doi.org/-0-12-815563-9.00004-5
  9. Abdiev, A.R., Mambetova, R.S., & Mambetov, S.A. (2017). Geomechanical assessment of Tyan-Shan’s mountains structures for efficient mining and mine construction. Gornyi Zhurnal, (4), 23-28. https://doi.org/10.17580/gzh.2017.04.04
  10. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva, L.M., & Bogzhanova, Z.K. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine “10 years of independence of Kazakhstan”. Ugol’, (06), 10-14. https://doi.org/10.18796/0041-5790-2020-6-10-14
  11. Demin, V.F., Isabek, T.K., & Demina, T.V. (2012). Komp’yuternoe modelirovanie napryazhennogo sostoyaniya prikonturnykh porod vokrug vyrabotok. Trudy Mezhdunarodnogo Simpoziuma “Informatsionno-Kommunikatsionnye Tekhnologii v Industrii, Obrazovanii i Nauke”, (3), 109-111.
  12. Arystan, I.D., Baizbaev, M.B., & Abdrashev, R.M. (2019). Tekhnologii provedeniya i krepleniya gornykh vyrabotok. Aktobe, Kazakhstan: ARGU im. K. Zhubanova, 99 s.
  13. Grebenkin, S.S., Pavlysh, V.N., Samoylov, V.L., & Petrenko, Yu.A. (2010). Upravlenie sostoyaniem massiva gornykh porod. Donetsk, Ukraina: DonNTU, 193 s.
  14. Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown criterion. Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada, (1), 267-273.
  15. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev, R.M., & Kuantay, A.S. (2020). Development of the choice of types of support parameters and technologies for their construction at the “Voskhod” field. Ugol’, (10), 17-21. https://doi.org/10.18796/0041-5790-2020-10-17-21
  16. Turchaninov, I.A., Iofis, M.A., & Kaspar’yan E.V. (1989). Osnovy mekhaniki gornykh porod. Leningrad, Rossiya: Nedra, 488 s.
  17. Duncan, J.M. (1996). State of the art: Limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering, 122(7), 577-596. https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577)
  18. Haimson, B.C., & Cornet, F. (2003). ISRM suggested methods for rock stress estimation – Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences, 40(7-8), 1011-1020. https://doi.org/10.1016/j.ijrmms.2003.08.002.
  19. Лицензия Creative Commons