Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Development and testing of an algorithm for calculating the load on support of mine workings

Volodymyr Bondarenko1, Iryna Kovalevska1, Frederick Cawood2, Oleksandr Husiev3, Vasyl Snihur4, Dennis Jimu4

1Dnipro University of Technology, Dnipro, 49005, Ukraine

2University of the Witwatersrand, Johannesburg, 2000, South Africa

3MM “Dniprovske”, PJSC “DTEK Pavlohradvuhillia”, Pavlohrad, 51400, Ukraine

4MM “Heroiv Kosmosu”, PJSC “DTEK Pavlohradvuhillia”, Pavlohrad, 51400, Ukraine


Min. miner. depos. 2021, 15(1):1-10


https://doi.org/10.33271/mining15.01.001

Full text (PDF)


      ABSTRACT

      Purpose. The purpose is to develop the calculation methods for minimizing the load on the fastening system of the preparatory mine working in difficult mining and geological conditions of its maintenance.

      Methods. By analysing the multivariate computational experiments on the study of the stress-strain state of the load-bearing elements of the ‘massif – support’ system in the preparatory mine workings by means of the finite-element method, as well as mine observations and measurements of displacement in the coal-overlaying rock formation.

      Findings. An algorithm has been developed for searching the rational modes of the fastening system resistance and methods for minimizing the load on the support of the preparatory mine working, maintained in very complex mining and geological conditions.

      Originality.The methodical principles have been developed of minimizing the load on the fastening system of the preparatory mine working, which are based on the use of a combination of stress-strain state studies of the ‘massif – support’ system by means of the finite element method and provisions of normative documents for calculating the dimensions of the dome of natural equilibrium of the mine working roof rocks.

      Practical implications. The operation modes optimisation of the load-bearing elements interaction of the mine working fastening system reduces the material and labour costs during its construction and increases its stability during operation.

      Keywords: analysis, calculation, optimization, support, preparatory mine working, stope works, roof rocks, collapse


      REFERENCES

  1. Liu, C., Li, H., Mitri, H., Jiang, D., Wang, G., Zhang, Z., & Jing, W. (2019). Strata movement and shield pressure analysis at tongxin longwall top coal caving working face with extra-thick coal seam. Arabian Journal of Geosciences, 12(24), 786.https://doi.org/10.1007/s12517-019-4787-0
  2. Yang, H., Han, C., Zhang, N., Sun, C., Pan, D., & Dong, M. (2019). Stability control of a goaf-side roadway under the mining disturbance of an adjacent coal working face in an underground mine. Sustainability, 11(22), 6398. https://doi.org/10.3390/su11226398
  3. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  4. Glushikhin, F.P., Shklyarskii, M.F., & Bazhin, N.P. (1981). Predicting rock pressure manifestations in seam development workings. Soviet Mining Science, 17(2), 112-117. https://doi.org/10.1007/bf02498404
  5. Odintsev, V.N. (1995). Method of analytical prediction of dynamic rock pressure manifestations. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (4), 12-24.
  6. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff-stone. E3S Web of Conference, (201), 01011. https://doi.org/10.1051/e3sconf/202020101011
  7. Nazimko, V.V., & Babenko, K.V. (2017). Spreading of ground pressure fluctuation in the gob. Proceedings of the 36th International Conference on Ground Control in Mining, 131-137.
  8. Abdiev, A., Mambetova, R., Abdiev, A., & Abdiev, S. (2020). Development of methods for assessing the mine workings stability. E3S Web of Conference, (201), 01040. https://doi.org/10.1051/e3sconf/202020101040
  9. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., & Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 58-64.
  10. Małkowski, P., Niedbalski, Z., & Majcherczyk, T. (2016). Roadway design efficiency indices for hard coal mines. Acta Geodynamica et Geomaterialia, 13(2(182)), 201-211. https://doi.org/10.13168/AGG.2016.0002
  11. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47. https://doi.org/10.1016/j.jsm.2018.03.004
  12. Kovalevska, I., Barabash, M., Husiev, О., & Snihur, V. (2018). Interaction of deformation-strength characteristics of the support load-bearing elements in the preparatory workings. E3S Web of Conferences, (60), 00002. https://doi.org/10.1051/e3sconf/20186000002
  13. Bondarenko, V.I., Simanovich, G.A., Kovalevska, I.A., & Fomichov, V.V. (2007). Research of rock stresses and deformations around mining workings. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 47-56. https://doi.org/10.1201/noe0415436700.ch6
  14. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73-82. https://doi.org/10.17794/rgn.2018.4.7
  15. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23-32. https://doi.org/10.17794/rgn.2020.2.3
  16. Abdiev, A.R. (2002). Evaluation of the stressed-strained state of rock massif for brown coal deposit. Gornyi Zhurnal, (10), 70-72.
  17. Majcherczyk, T., & Niedbalski, Z. (2017). The impact of multiple seam mining exploitations on seismic activity and state of stress. Studia Geotechnica et Mechanica, 39(1), 53-62. https://doi.org/10.1515/sgem-2017-0005
  18. Kuanyshbekovna, M.M., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  19. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44.https://doi.org/10.1201/b13157-8
  20. Kovalevska, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual-Scientific-Technical Collection – Mining of Mineral Deposits, 159-164. https://doi.org/10.1201/b16354-28
  21. Mambetov, S.A., Mambetov, A.S., & Abdiev, A.R. (2002). Zonal and step-by-step evaluation of the stressed-strained state of Tyan’-Shan’ rock massif. Gornyi Zhurnal, (10), 57-62.
  22. Kovalevs’ka, I., Fomychov, V., Illiashov, M., & Chervatuk, V. (2012). The formation of the finite-element model of the system “undermined massif – support of stope”. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 73-80. https://doi.org/10.1201/b13157-13
  23. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  24. Gallager, R. (1984). Konechnyy element. Analiz. Moskva, Rossiya: Nedra, 428 p.
  25. Fadeev, A.B. (1987). Metod konechnykh elementov v geomechanike. Moskva, Rossiya: Nedra, 221 p.
  26. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, (35), 77-88.https://doi.org/10.4028/www.scientific.net/jera.35.77
  27. Bondarenko, V., Kovalevska, I., Symanovych, G., Sotskov, V., & Barabash, M. (2018). Geomechanics of interference between the operation modes of mine working support elements at their loading. Mining Science, (25), 219-235. https://doi.org/10.5277/msc182515
  28. Vinogradov, V.V. (1989). Geomekhanika upravleniya sostoyaniem massiva vblizi gornykh vyrabotok. Кiev, Ukraina: Naukova dumka, 192 p.
  29. Simanovich, G., Serdiuk, V., Fomichov, V, & Bondarenko, V. (2007). Research of rock stresses and deformations around mining workings. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum 2007, 47-56. https://doi.org/10.1201/noe0415436700.ch6
  30. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https://doi.org/10.15407/mining11.02.001
  31. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 238 p.https://doi.org/10.1201/b13157
  32. Kovalevska, I., Vivcharenko, O., & Snigur, V. (2013). Specifics of percarbonic rock mass displacement in longwalls end areas and extraction workings. Annual-Scientific-Technical Collection – Mining of Mineral Deposits, 29-34.https://doi.org/10.1201/b16354-7
  33. Baklashov, I.V., & Kartoziya, B.A. (1986). Mekhanicheskie protsessy v porodnykh massivakh. Moskva, Rossiya: Nedra, 272 p.
  34. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 616 p.https://doi.org/10.1201/b19901
  35. KD 12.01.01.201-98. (1998). Raspolozhenie, okhrana i podderzhanie gornykh vyrabotok pri otrabotke ugol’nykh plastov na shakhtakh. Kyiv, Ukraina: Ukrainskyi naukovo-doslidnyi marksheyderskyi instytut, 149 p.
  36. SOU 10.1.00185790.011:2007. (2008). Pidhotovchi vyrobky na polohykh plastakh. Vybir kriplennia, sposobiv i zasobiv okhorony. Standart Minvuhlepromu Ukrainy. Donetsk, Ukraina: Donetskyi vuhilnyi instytut, 116 p.
  37. Małkowski, P., & Ostrowski, Ł. (2019). Convergence monitoring as a basis for numerical analysis of changes of rock-mass quality and Hoek-Brown failure criterion parameters due to longwall excavation. Archives of Mining Sciences, 68(1), 93-118.https://doi.org/10.24425/ams.2019.126274
  38. Majkherchik, T., Gajko, G.I., & Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol, (11), 27-29.
  39. Symanovych, G., Demydov, M., & Chervatuk, V. (2013). Influence mechanism of rock mass structure forming a stress on a face support. Annual-Scientific-Technical Collection – Mining of Mineral Deposits, 77-82. https://doi.org/10.1201/b16354-15
  40. Majcherczyk, T., Małkowski, P., & Niedbalski, Z. (2008). Rock mass movements around development workings in various density of standing-and-roof-bolting support. Journal of Coal Science & Engineering, 14(3), 356-360.https://doi.org/10.1007/s12404-008-0078-1
  41. Małkowski P., Niedbalski Z., Majcherczyk T., & Bednarek Ł. (2020). Underground monitoring as the best way of roadways support design validation in a long time period. Mining of Mineral Deposits, 14(3), 1-14.https://doi.org/10.33271/mining14.03.001
  42. Majcherczyk, T., Niedbalski, Z., Małkowski, P., & Bednarek, Ł. (2014). Analysis of yielding steel arch support with rock bolts in mine roadways stability aspect. Archives of Mining Sciences, 59(3), 641-654.https://doi.org/10.2478/amsc-2014-0045
  43. Holinko, V., Cheberiachko, I., Symanovych, H., & Kicki, J. (2019). Designing the half-masks of filter respirators for workers of mining enterprises. E3S Web of Conferences, (123), 01001. https://doi.org/10.1051/e3sconf/201912301001
  44. Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element method at multivariate calculation of mine massif – combined support system. Geomechanical Processes During Underground Mining, 7-13.https://doi.org/10.1201/b13157-3
  45. Bondarenko, V., Kovalevs’ka, I., Svystun, R., & Cherednichenko, Y. (2013). Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame-bolt support. Annual-Scientific-Technical Collection – Mining of Mineral Deposits, 5-10. https://doi.org/10.1201/b16354-3
  46. Usachenko, B.M., Kirichenko, V.Ya., & Shmigol’, A.V. (1992). Okhrana podgotovitel’nykh vyrabotok glubokikh gorizontov shakht Zapadnogo Donbassa. Moskva, Rossiya: Tsentral’nyy nauchno-issledovatel’skiy institut ekonomiki i nauchno-tekhnicheskoy informatsii ugol’noy promyshlennosti, 167 p.
  47. Rukovodstvo po podderzhaniyu gornykh vyrabotok na shakhtakh Zapadnogo Donbassa. (1992). Sankt-Peterburg, Rossiya: Vsesoyuznyy nauchno-issledovatel’skiy marksheyderskiy institute, 95 p.
  48. Instruktsiya po podderzhaniyu gornykh vyrabotok na shakhtakh Zapadnogo Donbassa. (1994). Sankt-Peterburg – Pavlograd, Rossiya – Ukraina: Vsesoyuznyy nauyno-issledovatel’skiy marksheyderskiy institut – Zapadno-Donbasskiy nauchno-proizvodstvennyy tsentr “Geomekhanika”.
  49. Лицензия Creative Commons