Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Dynamic analysis of well equipment to produce oil

Volodymyr Grudz1, Yaroslav Grudz1, Volodymyr Bevz1, Mykhailo Chernetsky1

1Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 76019, Ukraine


Min. miner. depos. 2020, 14(4):82-89


https://doi.org/10.33271/mining14.04.082

Full text (PDF)


      ABSTRACT

      Purpose is to study dynamics of a technological cycle of well oil production equipment to evaluate the forces acting on its structural components while operating. It is required to improve their reliability and durability owing to the decreased inertia.

      Methods. Mathematical modeling of the system relies upon the basic law of motion dynamics of a complex system with the attached mass involving deformation of the components and further implementation of the mathematical model using me-thods of mathematical analysis. To improve informativeness and reliability of the results, obtained in the process of mathematical modeling, it is proposed to divide the technological cycle into separate stages each of which characterizes a certain motion process as well as changes in the nature of forces influencing the system elements.

      Findings. Analysis of results of mathematical modeling of the system operating cycle makes it possible to draw conclusions about the process time as well as about the motion nature of a landing top during operation and a value of inertia acting on the well-drilling equipment demonstrating the ways to decrease them while providing reliability and durability of the facilities. Components of a hydraulic drive have been studied thoroughly while dividing its operation into eight phases of motion cycles. It has been identified that decrease in the inertia influence on the system components results from the following: power hydraulic cylinders are manufactured with the step-up diameter increase in their upper half; hollow rods in their lower half are equipped with а discharge valve dumping a certain share of liquid into a reservoir to decrease the traverser raise velocity.

      Originality. Mathematical modeling has helped identify that drastic decrease in the system inertia depends upon its structural and kinematic characteristics; moreover, it may vary broadly.

      Practical implications. During the practical operation of well-drilling equipment for oil production, decrease in inertia effect on the system components will help improve its reliability and durability.

      Keywords: drilling equipment, oil production, dynamics, force field, inertia, operating cycle, phase, reliability


      REFERENCES

  1. Molchanov, A.G., & Chicherov, L.G. (1983). Neftepromyslovye ma-shiny i mekhanizmy. Moskva, Rossiya: Nedra.
  2. Hrudz, V.Ya., Nasliednikov, S.V., & Onatsko, R.H. (2011). Prohnozuvannia vplyvu tekhnolohichnykh faktoriv na rozpodil intensyvnosti avarii. Naukovyi Visnyk IFNTUNH, 1(27), 39-43.https://doi.org/10.15587/1729-4061.2016.66193
  3. Kharun, V., Dzhus, A., Gladj, I., Raiter, P., Yatsiv, T., Hedzyk, N., & Kasatkin, S. (2018). Improving a technique for the estimation and adjustment of counterbalance of sucker-rod pumping units’ drives. Eastern-European Journal of Enterprise Technologies, 6(1(96)), 40-46.https://doi.org/10.15587/1729-4061.2018.150794
  4. Feng, Z.-M., Tan, J.-J., Li, Q., & Fang, X. (2017). A review of beam pumping energy-saving technologies. Journal of Petroleum Exploration and Production Technology, 8(1), 299-311.https://doi.org/10.1007/s13202-017-0383-6
  5. Hrudz, V.Ya., & Nasliednikov, S.V. (2011). Sverdlovynne ustatkuvannia dlia vyrobky zapasiv vuhlevodniv i metodyka yoho rozrakhunkiv. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch, 1(38), 12-16.
  6. Kushin, V.T., Sozonov, B.I., Permikin, Yu.N., & Kuznetsov, K.A. (1985). Gruppovoy privod skvazhinnykh glubinnykh nasosov. Patent SSSR 1174594.
  7. Maliar, A.V. (2009). Optymizatsiia zbalansovanosti verstata-hoidalky elektropryvodu shtanhovoi naftovydobuvnoi ustanovky. Elektrotekhnika i Elektromekhanika, (3), 29-31.
  8. Virnovskiy, A.S. (1971). Teoriya i praktika glubinnonasosnoy dobychi nefti. Izbrannye Trudy. Moskva, Rossiya: Nedra.
  9. Velichkovich, A.S. (2005). Shock absorber for oil-well sucker-rod pum-ping unit. Chemical and Petroleum Engineering, 41(9-10), 544-546.https://doi.org/10.1007/s10556-006-0015-3
  10. Popadyuk, І.Y., Shats’kyi, І.P., Shopa, V.М., & Velychkovych, A.S. (2016). Аrictional interaction of a cylindrical shell with deformable filler under nonmonotonic loading. Journal of Mathematical Sciences, 215(2), 243-253.https://doi.org/10.1007/s10958-016-2834-x
  11. Romero, O.J., & Almeida, P. (2014). Numerical simulation of the sucker-rod pumping system. Ingeniería e Investigación, 34(3), 4-11.https://doi.org/10.15446/ing.investig.v34n3.40835
  12. Takacs, G., Kis, L., & Koncz, A. (2015). The calculation of gearbox torque components on sucker-rod pumping units using dynamometer card data. Journal of Petroleum Exploration and Production Technology, 6(1), 101-110.https://doi.org/10.1007/s13202-015-0172-z
  13. Yavorskyi, A.V., Karpash, M.O., Zhovtulia, L.Y., Poberezhny, L.Y., Maruschak, P.O., & Prentkovskis, O. (2016). Risk management of a safe operation of engineering structures in the oil and gas sector. In Proceedings of the 20th International Scientific Conference “Transport Means” (pp. 370-373).
  14. Yavorskyi, A.V., Karpash, M.O., Zhovtulia, L.Y., Poberezhny, L.Y., & Maruschak, P.O. (2017). Safe operation of engineering structures in the oil and gas industry. Journal of Natural Gas Science and Engineering, (46), 289-295.https://doi.org/10.1016/j.jngse.2017.07.026
  15. Kryzhanivskyy, Y., Poberezhny, L., Maruschak, P., Lyakh, M., Slobodyan, V., & Zapukhliak, V. (2019). Influence of test temperature on impact toughness of X70 pipe steel welds. Procedia Structural Integrity, (16), 237-244.
  16. Kryzhanivskyy, Y., Poberezhny, L., Maruschak, P., Lyakh, M., Slobodyan, V., & Zapukhliak, V. (2019). Influence of test temperature on impact toughness of X70 pipe steel welds. Procedia Structural Integrity, (16), 237-244.https://doi.org/10.1016/j.prostr.2019.07.047
  17. Sof’ina, N.N., Shishlyannikov, D.I., Kornilov, K.A., & Vagin, E.O. (2016). Sposob kontrolya parametrov raboty i tekhnicheskogo sostoyaniya shtangovykh skvazhinnykh nasosnykh ustanovok. Master’s Journal, (1), 247-257.
  18. Janahmadov, A.K., Volchenko, A.I., Javadov, M.Y., Volchenko, D.A., Volchenko, N.A., & Janahmadov, E.A. (2014). The characteristic analysis of changes in the processes, phenomena and effects within working layers of metal polymer pairs during electro-thermo-mechanical friction. Science & Applied Engineering Quarterly, (02), 6-17.
  19. Krawczyk, K., Nowiński, E., & Chojnacka, A. (2011). Możliwości sterowania siłą tarcia za pomocą prądu elektrycznego przepływającego przez strefę tarcia. Tribologia: Tarcie, Zużycie, Smarowanie, (2), 61-70.
  20. Malyar, A., Andreishyn, A., Kaluzhnyi, B., & Holovach, I. (2017). Study of the hamming network efficiency for the sucker-rod oil pumping unit status identification. Computational Problems of Electrical Engineering, 7(1), 45-50.https://doi.org/10.23939/jcpee2017.01.045
  21. Лицензия Creative Commons