Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Scaled-up laboratory research into dry magnetic separation of the Zhezdinsky concentrating mill tailings in Kazakhstan

Amangeldy Mustakhimov1, Abdikarim Zeynullin1

1RPA “Kazakhstan National Academy of Natural Sciences”, Nur-Sultan, 720001, Kazakhstan


Min. miner. depos. 2020, 14(3):71-77


https://doi.org/10.33271/mining14.03.071

Full text (PDF)


      ABSTRACT

      Purpose. Development of the rational technology for processing manganese-bearing tailings of the Zhezdinsky concentrating mill in the Republic of Kazakhstan aimed to obtaining manganese concentrate for smelting the silicomanganese.

      Methods. An integrated methodology of research is used in the work, which includes an analysis of modern scientific developments and the experience of their use by mining-and-metallurgical enterprises. Experimental study of the tailings material composition has been made. A research scheme has been drawn up, including dry re-grinding of the mature tailings from concentrating mill with subsequent air classification, the products of which are beneficiated by means of dry magnetic separation in a separator with a constant strong magnetic field. Granulometric and fractional compositions of the feedstock and separation products have been studied.

      Findings. Based on the granulometric and fractional composition analysis of the Zhezdinsky concentrating mill mature tailings, it has been determined that the manganese minerals contained in them are very finely disseminated and belong to easily beneficiated materials. For a more complete recovery of manganese into the concentrate, dry re-grinding and air classification techniques have been included in the beneficiation scheme. Scaled-up laboratory research on tailings beneficiation has been conducted under the scheme: dry grinding to a grain-size of less than 1 mm, screening with division into classes of 0.5-1.0 mm and 0.0-0.5 mm, and then air classification. Air classification products are beneficiated using dry magnetic separation. It has been revealed that the use of air classification during the magnetic field induction of 0.5 T allows to increase the magnetic fractions yield by 7.5% and the manganese recovery by 9.42%. Analysis of the magnetic separation results of fine classes indicates the possibility of obtaining manganese concentrate with the required quality even without using the air classification. This greatly simplifies the beneficiation scheme for mature manganese-bearing tailings at the Zhezdinsky concentrating mill.

      Originality.It has been determined that dry re-grinding of the concentrating mill mature tailings to a grain-size of less than 1 mm, followed by air classification, makes it possible to fully disclose the manganese minerals. With subsequent dry magnetic separation this leads to an increase in the magnetic fraction yield and in the manganese recovery.

      Practical implications. The optimal technology development enables obtaining manganese concentrate with the required quality for the subsequent production of ferromanganese or silicomanganese during metallurgical treatment.

      Keywords: tailings, granulometric composition, grinding, separation


      REFERENCES

  1. Abdullin, A.A., Bespaev, Kh.A., & Daukeev, S.Zh. (1999). Mestorozhdeniya margantsa Kazakhstana. Almaty, Kazakhstan: Nauka.
  2. Menshov, O., Spassov, S., Camps, P., Vyzhva, S., Pereira, P., Pastushenko, T., & Demidov, V. (2020). Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environmental Earth Sciences, (79), 1-10.https://doi.org/10.1007/s12665-020-08924-5
  3. Kalinichenko, V., Pysmennyi, S., Shvaher, N., Kalinichenko, O. (2018). Selective underground mining of complex structured ore bodies of Kryvyi Rih Iron Ore Basin. E3S Web of Conferences, (60), 00041https://doi.org/10.1051/e3sconf/20186000041.
  4. Menshov, O., Kruglov, O., Vyzhva, S., Nazarok, P., Pereira, P., & Pastushenko, T. (2018). Magnetic methods in tracing soil erosion, Kharkov Region, Ukraine. Studia Geophysica et Geodaetica, 62(4), 681-696.https://doi.org/10.1007/s11200-018-0803-1
  5. Tolymbekov, M.Zh. (2007). Margantsevorudnaya otrasl’ Kazakhstana. Gornyy Zhurnal Kazakhstana, (2), 2-5.
  6. Kompleksnaya pererabotka mineral’nogo syr’ya Kazakhstana. Sostoyanie, problemy, resheniya. (2008). Tom 3. Podgotovka i metallurgicheskaya pererabotka zheleznykh i margantsevykh rud. Almaty, Kazakhstan: Nauka.
  7. Lyashenko, V.I., Dyatchin, V.Z., & Lisovoy, I.A. (2018). Increase of Environmental Safety of Mining Production on the Basis of Waste Utilization of Extraction and Processing of Ore Raw Materials. Ecology and Industry of Russia, 22(4), 4-10.https://doi.org/10.18412/1816-0395-2018-4-4-10
  8. Chekushina, T.V., Vorobyev, A.E., Lyashenko, V.I., Tcharo, K. (2019). Efficiency of heap leaching of metals from raw ore taking into account the influence of climatic factors. Obogashchenie Rud, 9-12.https://doi.org/10.17580/or.2019.05.02
  9. Karenov, R.S. (2007). Problemy stanovleniya rynka chernykh metallov v Kazakhstane. Vestnik Karagandinskogo Gosudarstvennogo Universiteta. Seriya “Ekonomika”, 4(48), 9-25.
  10. Bitimbaev, M.Zh., & Maulyanbaev, T.I. (2007). Stanovlenie glavnoy syr’yevoy bazy chernoy metallurgii Kazakhstana. Gornyy Zhurnal Kazakhstana, (6), 2-6.
  11. Koketaev, A., Meyrmanova, A., Zhaktaeva, R., Artykbaev, K., & Tamabaeva, S. (2009). Strategicheskie orientiry razvitiya gorno-metallurgicheskogo kompleksa. Promyshlennost’ Kazakhstana, 4(55), 31-34.
  12. Stupnik, M., Kolosov, V., Kalinichenko, V., Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 25-30.https://doi.org/10.1201/b17547.
  13. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., & Koziar, M. (2020). Results of Research into the Content of Rare Earth Materials in Man-Made Phosphogypsum Deposits. Key Engineering Materials, (844), 77-87.https://doi.org/10.4028/www.scientific.net/kem.844.77
  14. Popovych, V., & Voloshchyshyn, A. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of National Academy of Sciences of the Republic of Kazakhstan, 4(436), 230-237.https://doi.org/10.32014/2019.2518-170x.118
  15. Medvedieva, O., Lapshyn, Y., Koval, N., Zeynullin, A., & Gupalo, O. (2020). The resource-saving technology to restore the accumulation ability of tailing ponds. E3S Web of Conferences, (168), 00054.https://doi.org/10.1051/e3sconf/202016800054
  16. Bekturganov, N.S. (2013). Innovatsionnye tekhnologii obogashcheniya mineral’nogo i tekhnogennogo syr’ya Kazakhstana. Innovatsionnye Protsessy Kompleksnoy i Glubokoy Pererabotki Mineral’nogo Syr’ya, 24-27.
  17. Arkhipov, A.V., & Reshetnyak, S.P. (2017). Tekhnogennye mestorozhdeniya. Razrabotka i formirovanie. Apatity, Rossiya: KNTs RAN.
  18. Edil’baev, A.I. (2009). Obogashchenie nekondtsionnogo tekhnogennogo marganetssoderzhashchego syr’ya. Moskva, Rossiya: Institut GINTsVETMET.
  19. Tolymbekova, L.B. (2014). Razrabotka tekhnologii vyplavki ferrosilikomargantsa iz okomkovannogo vysokokremnistogo margantsevogo syr’ya. Ekaterinburg, Rossiya: KhMI.
  20. Taran, I., & Klymenko, I. (2018). Analysis of hydrostatic mechanical transmission efficiency in the process of wheeled vehicle braking. Transport Problems, (12), 45-56.https://doi.org/10.20858/tp.2017.12.se.4
  21. Rakishev, B.R., & Galiev, D.A. (2015). Optimization of the ore flow quality characteristics in the quarry in road-rail transport. Metallurgical and Mining Industry, 7(4), 356-362.
  22. Mostyka, Yu.S., & Zubarev, A.I. (2013). Analiz sostoyaniya i perspektivy izvlecheniya marganetssoderzhashchego syr’ya iz shlamokhranilishch Nikopol’skogo basseyna metodom sukhoy magnitnoy separatsii. Naukovі pratsі DonNTU. Serіia “Hіrnycho-heolohіchna”, (2), 227-229.
  23. Otchet po pereschetu zapasov margantsa v tekhnogennykh mineral’nykh obrazovaniyakh Zhezdinskoy obogatitel’noy fabriki po sostoyaniyu na 01.10.2009. (2009). Karaganda, Kazakhstan: GR No. 6KR-02-902-54.
  24. Mustakhimov, A.T., Zeynullin, A.A., & Dadonova, T.N. (2019). Razrabotka tekhnologii pererabotki TMO marganetssoderzhashchikh khvostov Zhezdinskoy OF. Otchet O NIR. Nur-Sultan, Kazakhstan: GR No. 0118RK00992.
  25. Mulyavko, V.I., Oleynik, T.A., Oleynik, M.O., Mikhno, S.V., & Lyashenko, V.I. (2014). Innovation technologies and machinery for separation of feebly magnetic ores. Obogashchenie Rud, (2), 43-49.
  26. Gurin, A.A., Lyashenko, V.I., & Taran, N.A. (2014). New technologies and means of tailings storage facilities dusting surface binding stabilization. Obogashchenie Rud, (5), 41-47.
  27. Lyashenko, V.I., Golik, V.I., & Dyatchin, V.Z. (2020). Storage of tailings in the form of a hardened mass in underground mined-out spaces and tailings facilities. Obogashchenie Rud, (1), 41-47.https://doi.org/10.17580/or.2020.01.08
  28. Kilin, V.I. (2009). Intensifikatsiya protsessov sukhoy magnitnoy separatsii magnetitovykh rud. Krasnoyarsk, Rossiya: Institut fiziki im. L.V. Kirsnskogo.
  29. Edil’baev, A.I. (2008). Izuchenie magnitnoy vospriimchivosti margantsevoy melochi mestorozhdeniya Tur. Tsvetnye Metally, (10), 28-30.
  30. Vaysberg, L.A., & Ustinov, I.D. (2010). Promyshlennoe i laboratornoe oborudovanie dlya obogashcheniya prirodnogo i tekhnogennogo syr’ya. Obogashchenie Rud, (5), 25-28.
  31. Azbel’, Yu.I., Lupey, S.A., Dmitriev, S.V., Grigor’yev, I.V., & Mezenin, A.O. (2011). Magnitnaya i elektromagnitnaya separatsiya razlichnykh chernovykh kontsentratov Lemnenskoy OF Irshanskogo GOKa. Obogashchenie Rud, (5), 13-15.
  32. Arsent’yev, V.A., Azbel’, Yu.I., Dmitriev, S.V., Grigor’yev, I.V., & Mezenin, A.O. (2010). Valkovyy separator na postoyannykh magnitakh dlya obogashcheniya slabomagnitnykh materialov. Patent No. 104487, Rossiya.
  33. Лицензия Creative Commons