Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Effect of heat shock on graphitization of Donbass anthracite

Artem Sybir1, Mykhailo Hubynskyi2, Serhii Fedorov1, Semen Hubynskyi2, Tetiana Vvedenska3, Volodymyr Bezuglyi1

1National Metallurgical Academy of Ukraine, Dnipro, 49005, Ukraine

2Thermal and Material Engineering Center Ltd, Dnipro, 49005, Ukraine

3Dnipro University of Technology, Dnipro, 49005, Ukraine


Min. miner. depos. 2020, 14(3):43-49


https://doi.org/10.33271/mining14.03.043

Full text (PDF)


      ABSTRACT

      Purpose. The aim is to conduct experimental research into graphitization process of anthracites from the Donbass basin using shock heating, which is characteristic of furnaces with electrothermal fluidized bed.

      Methods. Graphitization was carried out in an electrothermal furnace at the heating rate of 1000 K/min and exposure time of 10 minutes. The temperature range of the studies was 1973-2873 K. The structure of the material was studied by X-ray diffraction and the electrical conductivity of the coal particles layer was determined using a CamScan 4DV scanning electron microscope with Link760 attachment. The changes in ash and sulfur content were determined.

      Findings. It was found that with an increase in the processing temperature, the interlayer distance d002 decreased from 0.350 to 0.341 nm, the ash content decreased from 3.46 to 0.4%, and the relative electrical conductivity increased by 4 times. The absolute value of anthracite graphitization degree significantly differed from the values characteristic of artificial graphite. This may be due to insufficient exposure at the studied temperatures, as well as the production of a porous, insufficiently densified coal structure during high-speed heating to 1573 K.

      Originality.The principal possibility of obtaining graphitized anthracite using shock heating in furnaces with electrothermal fluidized bed and the possibility of assessing anthracite graphitization degree by the value of the relative conductivity of coal particles layer are shown.

      Practical implications. The practical implementation of the new technology is possible after determining the optimal parameters for graphitization of anthracites, which provide a deep structural adjustment characteristic of artificial graphites. First of all, this concerns the preliminary heating of anthracite to the temperature of 1273-1373 K, as well as choosing the temperature and exposure during graphitization. Determination of these parameters will allow to evaluate the technical and economic indicators of the new technology and to adjust the design parameters of furnaces with electrothermal fluidized bed.

      Keywords: graphitization, anthracite, shock heating, electrothermal fluidized bed, X-ray analysis, electrical conductivity


      REFERENCES

  1. Cameán, I., Lavela, P., Tirado, J.L., & García, A.B. (2010). On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 89(5), 986-991.https://doi.org/10.1016/j.fuel.2009.06.034
  2. Pirogov, V.I., & Seleznev, A.N. (2006). Primenenie antratsita kak napolnitelya uglerodnoy produktsii. Rosiyskiy Khimicheskiy Zhurnal, L(1), 12-16.
  3. Lakomskiy, V.I. (2008). Elektricheskie i elektrokontaktnye svoystva elektrodnogo termoantratsita. Kiev, Ukraina: Akademperiodika.
  4. Petrov, B.F. (2006). Energosberezhenie pri proizvodstve elektrodnogo termoantratsita. Kiev, Ukraina: Ekotekhnologiya.
  5. Janerka, K., Jezierski, J., Stawarz, M., & Szajnar, J. (2019). Method for resistivity measurement of grainy carbon and graphite materials. Materials, 12(4), 648.https://doi.org/10.3390/ma12040648
  6. Tyumentsev, V.A., Saunina, S.I., Belenkov, E.A., Podkopaev, S.A., Semenov, P.V., & Shveykin, G.L. (1998) Nizkotemperaturnaya grafitatsiya, stimulirovannaya khimicheskim prevrashcheniyaem. Vestnik Chelyabinskogo Gosudarstennogo Universiteta, 1(6), 138-163.
  7. Gordeev, D.V., Erokhina, O.O., & Butenko, A.A. (2017). Teplovoy balans protsessa prokalki antratsita. Materialy IV mezhdunarodnoy nauchno-prakticheskoy konferentsii “Voprosy tekhnicheskikh nauk v svete sovremennykh issledovaniy”. Novosibirsk, Rossiya: ANS “SibAK”.
  8. Pappano, P.J., & Schobert, H.H. (2009). Effect of natural mineral inclusions on the graphitizability of a Pennsylvania anthracite. Energy & Fuels, 23(1), 422-428.https://doi.org/10.1021/ef800515r
  9. Sosedov, V.P., & Chalykh, E.F. (1987). Grafitatsiya uglerodistykh materialov. Moskva Rossiya: Metallurgiya.
  10. Pirogov, V.I. (2004). Razrabotka tekhnologii polucheniya termoantratsita v pechakh grafitatsii. Moskva, Rossiya: NIIGRAFIT.
  11. Slobodskoy, S.A. (2012). Sovershenstvovanie protsessa proizvodstva elektrodnogo termoantratsita. Uglekhimicheskiy Zhurnal, (1-2), 25-34.
  12. Dzhamolzoda, B.S., Murodien, A., Safarov, A.G., & Safiev, Kh. (2014). Rentgenograficheskoe i termograficheskoe issledovaniya antratsita mestorozhdeniya Nazaraylok do i posle termoobrabotki. Doklady Akademii Nauk Respubliki Tadzhikistan, 57(7), 594-597.
  13. Qiu, T., Yang, J., & Bai, X. (2020). Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite. International Journal of Minerals, Metallurgy and Materials, 27(2), 162-172.https://doi.org/10.1007/s12613-019-1859-9
  14. González, D., Montes-Morán, M.A., & Garcia, A.B. (2003). Graphite materials prepared from an anthracite:  a structural characterization. Energy & Fuels, 17(5), 1324-1329. https://doi.org/10.1021/ef0300491
  15. Qiu, T., Yang, J.-G., & Bai, X.-J. (2019). Investigation on microstructural changes of Anthracite during Graphitization and effect of Silica content on product crystal structure. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-14.https://doi.org/10.1080/15567036.2019.1632982
  16. Ma, H., & Liu, Y. (2014). Effect high temperature annealing on graphitization of anthracite. Asian Journal of Chemistry, 26(9), 2729-2732.https://doi.org/10.14233/ajchem.2014.16186a
  17. Nyathi, M.S., Clifford, C.B., & Schobert, H.H. (2013). Characterization of graphitic materials prepared from different rank Pennsylvania anthracites. Fuel, (114), 244-250.https://doi.org/10.1016/j.fuel.2012.04.003
  18. González, D., Montes-Morán, M.A., Suárez-Ruiz, I., & Garcia, A.B. (2004). Structural characterization of graphite materials prepared from anthracites of different characteristics: a comparative analysis. Energy & Fuels, 18(2), 365-370.https://doi.org/10.1021/ef030144
  19. Rodrigues, S., Suárez-Ruiz, I., Marques, M., & Flores, D. (2012). Catalytic role of mineral matter in structural transformation of anthracites during high temperature treatment. International Journal of Coal Geology, (93), 49-55.https://doi.org/10.1016/j.coal.2012.01.012
  20. Fedorov, S.S., Gubinskiy, M.V., Tishchenko, T.A., & Barsukov, I.V. (2015) Osobennosti protsessov nagreva uglerodsoderzhashchego syr’ya v elektrotermicheskikh pechakh kipyashchego sloya. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (3), 103-107.
  21. Gubinskiy, M.V., Fedorov, S.S., Livitan, N.V., Gogotsi, A.G., Barsukov, I.V., & Rohathi, U. (2013). Analysis of energy efficiency of furnaces for high temperature treatment of carbon materials. Metallurgical and Mining Industry, (2), 71-76.
  22. Koester, S., Salmon, E., & Wehling, C. (2018). Resilient graphitic carbons from electro‐thermal fluidized bed reactor. Advances in Ceramics for Environmental, Functional, Structural, and Energy Applications, 53-58.https://doi.org/10.1002/9781119543299.ch6
  23. Maire, J., & Mering, J. (1970). Graphitization of soft carbons. Chemistry and Physics of Carbon, (6), 125-190.
  24. Fedorov, S., Sybir, A., Hubinskyi, S., Kieush, L., & Koveria, A. (2019). Operating modes of the advanced purification technology for graphite application in lithium-ion batteries. Chemical Technology and Engineering. Proceedings, (1), 285-287.https://doi.org/10.23939/cte2019.01.285
  25. Xiao, J., Li, F., Zhong, Q., Huang, J., Wang, B., & Zhang, Y. (2016). Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke. Journal of Analytical and Applied Pyrolysis, (117), 64-71.https://doi.org/10.1016/j.jaap.2015.12.015
  26. Fedorov, S.S., Bezuglyy, V.A, Gubinskiy, M.V., & Kremneva, E.V. (2015). Issledovanie udel’nogo elektricheskogo soprotivleniya uglerodsoderzhashchikh materialov v plotnom i kipyashchem sloe. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (6), 116-121.
  27. Bezuglyy, V.A., Gubinskiy, M.V., Koverya, A.S., Konovalenko, V.P., & Kondratenko, P.V (2019). Eksperimental’noe issledovanie udel’nogo elektricheskogo soprotivleniya nasypnogo sloya termoantratsita. Metall i Lit’ye Ukrainy, (5-6), 40-47.
  28. Van-Krevelen, D.W. (1961). Coal. Amsntrdam-London-New York: Prmceton.
  29. Fishbach, D.B. (1971). The kinetiks and mechanizm of graphitization. Chemistry and Physics of Carbon, (7), 1-107.
  30. Fitzer, E., & Weisenburger, S. (1976). Kinetics of graphitization within the first minute of heat treatment. Carbon, 14(6), 323-327.https://doi.org/10.1016/0008-6223(76)90004-x
  31. Shulepov, S.V. (1972). Fizika uglegrafitovykh materialov. Moskva, Rossiya: Metallurgiya.
  32. Kuznetsov, B.N., Shchipko, M.L., Chesnokov, T.P., Miloshenko, T.P., Safonova, L.V., Veprikova, E.V., Zhizhaev, A.M., & Pavlenko, N.I. (2005). Poluchenie poristykh uglerodnykh materialov vysokoskorostnym nagrevom i predvaritel’noy khimicheskoy modifikatsiey antratsitov. Khimiya v Interesakh Ustoychivogo Razvitiya, (13), 521-529.
  33. Лицензия Creative Commons