Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Design of bottom hole assemblies with two rock cutting tools for drilling wells of large diameter

Vasyl Moisyshyn1, Igor Voyevidko1, Vasyl Tokaruk1

1Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 76019, Ukraine

Min. miner. depos. 2020, 14(3):128-133

https://doi.org/10.33271/mining14.03.119

Full text (PDF)

ABSTRACT

Purpose. A methodology development for calculating the bottom hole assemblies (BHA) with two rock cutting tools for drilling the wells of large-diameter with an ability to manage the trajectory.

Methods. A mathematical model has been developed for calculating the assemblies for drilling wells of large-diameter using two rock cutting tools – a bit and a reamer. The main technical and geological factors have been modelled, which influence the assembly elements (stress-strain state of the BHA, deflecting forces arising due to the rock influence). An algorithm for determining the distribution of axial load between the bit and the reamer has been developed. It has been modelled the formation of the reamer eсcentrical displacement relative to the pilot wellbore and the change in the intensity of the wellbore curvature in the process of deepening. Further on, a practical calculation according to the developed methodology is given.

Findings. It has determined that an increase in the resource coefficient of cutting structure (that is, an increase in the total number of teeth on a bit, or a decrease in teeth on a reamer) leads to a decrease in the load on the bit. With an increase in the coefficient of destruction areas, the load on the bit decreases. It has been revealed that when drilling with assemblies, a significant influence on the stress-strain state of the BHA and on the change in deflecting forces, has an eccentricity on the reamer, while the intensity of the well curvature changes. It has been proven that the same assembly allows the well to be drilled with different curvature intensities, which can be adjusted by placing a restrictor under the reamer.

Originality.A new comprehensive approach is proposed to the calculation of assemblies with two rock cutting tools, which is different in that it allows to perform an iterative cyclic calculation with constant refinement of the main parameters and the creation of a data set for constructing a well trajectory.

Practical implications. The developed methodology for calculating the bottom hole assemblies with two rock cutting tools makes it possible to determine a rational design of the BHA for drilling a well in a specified direction by changing the design parameters of the drill collar (DC), supporting-centering elements (SCE), a bit, a reamer and an eccentricity restrictor.

Keywords: well, rock cutting tools, reamer, drilling, pilot wellbore, eccentricity

REFERENCES

1. Al-Mayyan, H., Malik, A., Sumait, B., Fayed, M., Khalil, K., & Khalil, A. (2016). New concentric dual diameter fixed cutter technology bit drills 56 faster and saves operator drilling time in directional application through challenging abrasive sandstone in one of the largest reservoirs in the Middle East. In Abu Dhabi International Petroleum Exhibition & Conference (p. 13). Abu Dhabi, United Arab Emirates: SPE.https://doi.org/10.2118/183381-ms
2. Jardinez, A., Guzman, G., Karrer, C., Murillo, R., Verano, F., Araujo, J.C., & Lopez, J.R. (2014). Advanced FEA modeling produces first directional tandem reamer BHA: eliminates trip on deepwater exploration well. In IADC/SPE Drilling Conference and Exhibition (p. 14). Austin, Texas, United States: SPE.https://doi.org/10.2118/167925-ms
3. Da Silva, L.P., Paixao, D., Kishi, A.R.K., & Silva, A.R. (2010). Hole enlargement in Brazilian. SPE Latin American and Caribbean Petroleum Engineering Conference (p. 10). Lima, Peru: SPE.https://doi.org/10.2118/139300-ms
4. Raziyev, M., Liang, Q.J., Syaifullah, N., Tang, K.H., Lee, S.L., & Willis, S. (2011). Dual eccentric reamer BHA solves hole opening challenges and conductor sharing pass through constraints. In SPE Asia Pacific Oil and Gas Conference and Exhibition (p. 10). Jakarta, Indonesia: SPE.https://doi.org/10.2118/145864-ms
5. Burimov, J., Kopylov, A., & Orlov, A. (1975). Burenie verchnich intervalov glubokich skvazhin bol’shogo diametra. Moskva, Rossiya: Nedra.
6. Mason, C., Wenande, B., & Chen, D.C.-K. (2007). Supersize hole creates drilling opportunity. SPE Annual Technical Conference and Exhibition (p. 13). California, United States: SPE.https://doi.org/10.2118/108427-ms
7. Rasheed, W., & Zhou, S. (2009). Uncertainty and costs in drilling and completion: innovative underreamer verifies wellbore diameter in real-time. In Middle East Oil & Gas Show and Conference (p. 10). Manama, Bahrain: SPE.
8. Raykhert, L., & Fryz, I. (1985). Napravlenoe burenie skvazhin v anizotropnykh porodakh rotornym sposobom stupenchatymi KNBK. Trudy VNIIBT, (61).
9. Voyevidko, I., Oleksiuk, M., & Tokaruk, V. (2018). Spetsyfika burinnia sverdlovyn velykoho diametra z vykorystanniam dvokh porodoruinivnykh instrumentiv. Naftohazova Haluz Ukrainy, (1), 1-10.
10. Voyevidko, I., & Tokaruk, V. (2018). Proektuvannia komponovok nyzu burylnoi kolony z dvoma porodoruinivnymy instrumentamy dlia burinnia sverdlovyn v zadanomu napriamku. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch, (2), 8-13.
11. Voyevidko, I., & Tokaruk, V. (2018). Razrabotka KNBK s dvumya porodorazrushayushchimi elementami dlya bureniya uslovno vertikal'nykh skvazhin diametrom 660 mm. Vestnik Belorussko-Rossiyskogo Universiteta, (1), 9-15.
12. Voyevidko, I., & Tokaruk, V. (2019). Rozrakhunok KNBK z dvoma porodoruinuiuchymy instrumentamy dlia burinnia sverdlovyn ø555 mm z naborom zenitnoho kuta. Naftohazova Haluz Ukrainy, (6), 9-15.
13. Hrechyn, E. (2006). Raschety neorientiruemykh komponovok dlya bureniya naklonnykh i horizontalnykh skvazhin. Tyumen, Rossiya: Neftehazovyy unyversytet.
14. Meyer-Heye, B., Reckmann, H., & Ostermeyer, G.-P. (2010). Weight distribution in reaming while drilling BHAs. IADC/SPE Drilling Conference and Exhibition (p. 10). New Orleans, United States: IADC/SPE.https://doi.org/10.2118/127094-ms
15. Voyevidko, I. (2007). Rozrobka naukovo-metodychnykh osnov ta tekhnichnykh zasobiv dlia pidvyshchennia tochnosti provedennia naftohazovykh sverdlovyn v zadanomu napriami. Ivano-Frankivsk, Ukraina: IFNTUNG.
16. Chudyk, I., & Kozlov, A. (2006). Vplyv kryvyzny stovbura sverdlovyny na statychni formy rivnovahy neoriientovanykh KNBK. Naukovyi Visnyk IFNTUNH, (1), 5-10.
17. Yanturyn, R. (2005). Sovershenstvovanie metodov raschetov parametrov komponovok niza burilnoy kolonny i ikh elementov dlya bezorientirovannoho bureniya. Ph.D. Ufa, Rossiya.
18. Shreyner, L. (1950). Fizicheskie osnovy mekhaniki gornykh porod. Moskva, Rossiya: Gostoptekhizdat.
19. Grigulets’kiy, V. (1988). Optimal’noe upravlenie pri burenii skvazhin. Moskva, Rossiya: Nedra.
20. Hulyzade, M., & Mamedbekov, O. (1982). Raschet tempa prostranstvennoho iskrivleniya naklonnykh skvazhin pri burenii neorientirovannymi KNBK. Teoriya i Praktika Bureniya Naklonnykh Skvazhin, (1), 63-69.