Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Experimental characteristics for deformation properties of backfill mass

Ihor Iordanov1, Yuliia Novikova2, Yuliia Simonova2, Oleh Yefremov2, Yevgen Podkopayev2, Anton Korol3

1LLC “MC ELTEKO”, Kostiantynivka, 85103, Ukraine

2Donetsk National Technical University, Pokrovsk, 85300, Ukraine

3LLC “DTEK Dobropolyeugol”, Dobropillia, 85043, Ukraine


Min. miner. depos. 2020, 14(3):119-127


https://doi.org/10.33271/mining14.03.119

Full text (PDF)


      ABSTRACT

      Purpose. Determining the deformation properties of backfill mass used to preserve the continuity of the coal-rock stratum enclosing mine workings.

      Methods. To achieve the purpose set, laboratory studies have been performed on crushed rock samples with different granulometric composition, which are exposed to uniaxial compression in a steel cylinder. The experimental data are processed using the mathematical statistics methods.

      Findings. As a result of performed laboratory studies, it has been determined that during compression pressure of the backfill material from crushed rock, the deformation modulus is a variable value and depends on the value of the applied load, which means that it cannot be used as a physical characteristic of the backfill mass. It has been proven that the deformation modulus characterizes the backfill mass rigidity, that is, its ultimate stress state. The rigidity value under a constant external load, can be regulated using the granulometric composition of the crushed rock. It has been revealed that the maximum shrinkage of the backfill mass is achieved when repacking crushed rock fractions of different sizes under volume compression of the backfill material. In the case when the backfill material is a homogeneous fraction of crushed rock, when increasing the constrained modulus, the backfill mass rigidity increases, and shrinkage decreases.

      Originality.It has been proven that the values of the crushed rock compaction coefficient, which characterizes the shrin-kage of the backfill mass, are correlated with a parabola and depend on the granulometric composition of the source material. With inhomogeneous granulometric composition, the compaction coefficient values are maximum, and for backfill material with the similar fraction, they decrease with a change in the bulk density of the crushed rock.

      Practical implications. To ensure the side rocks stability and to maintain mine workings in an operational state, it is necessary to ensure a uniform by volume granulometric composition inhomogeneity of the crushed rock. This determines the ability of the roof and bottom of the coal seam to effectively respond to the impact of external factors that are manifested in the mass of sedimentary rocks during mining operations.

      Keywords: stability, roof, coal seam, stope face, stress-strain state, modelling, equivalent materials


      REFERENCES

  1. Zhang, D., Miao, X., Ma, L., & Feng, G. (2004). Technique of gob-side entry retaining with entry-in packing in fully-mechanized coalface with top-coal caving. Mining Science and Technology, 36(10), 49-54.https://doi.org/10.1201/9780203022528-9
  2. Yang, S.-L., Ding, X.-P., Wang, X., Li, X.-M., & Lin, L. (2013). Analysis of floor failure depth by using electric profiling method in longwall gangue backfill mining. Journal of Coal Science and Engineering (China), 19(3), 282–289.https://doi.org/10.1007/s12404-013-0303-4
  3. Wu, W., Bai, J., Yan, S., Wang, X., & Wu, B. (2020). Planning and design of underground space construction during longwall mining in coal mines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15.https://doi.org/10.1080/15567036.2020.1747574
  4. Vasil’yeva, I.V. (2015). Aktual’nyye voprosy monitoringa porodnykh otvalov ugol’nykh shakht i okhrany okruzhayushchey sredy. Míneralní Resursy Ukrainy, (3), 39-45.
  5. Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129-132.https://doi.org/10.1201/noe0415436700.ch16
  6. Khayrutdinov, M.M., & Shaymyardyanov, I.K. (2009). Podzemnaya geotekhnologiya s zakladkoy vyrabotannogo prostranstva: nedostatki, vozmozhnosti sovershenstvovaniya. Gornyy Informatsionno-Analiticheskiy Byulleten’, (1), 240-250.
  7. Dzyuba, S.V., Shmelev, N.A., & Koval’, N.V. (2012). Analiz tekhnologiy podzemnoy razrabotki mestorozhdeniy poleznykh iskopayemykh pri vedenii gornykh rabot v slozhnykh gorno-geologicheskikh usloviyakh. Geotekhnicheskaya Mekhanika, (101), 284-291.
  8. Bulat, A.F., Skipochka, S.I., Palamarchuk, T.A., & Antsiferov, V.A. (2010). Metanogeneratsiya v ugol’nykh plastakh. Dnepropetrovsk, Ukraina: Lira.
  9. Seitmuratova, E., Arshamov, Y., Bekbotayeva, A., Baratov, R., & Dautbekov, D. (2016). Priority metallogenic aspects of late paleozioc volcanic-plutonic belts of Zhongar-Balkhash fold system. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 511-518.https://doi.org/10.5593/sgem2016/b11/s01.064
  10. Kolokolov, O.V. (1997). Tekhnologiya zakladki vyrabotannogo prostranstva v shakhtakh i rudnikakh. Dnepropetrovsk, Ukraina: Sich.
  11. Zhukov, V.E. (2001). On one strategic mistake in resolving the problem of developing steep formations. Ugol of Ukraine, (7), 6-10.
  12. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 45-48.https://doi.org/10.1201/b16354-10
  13. Zhukov, V.Ye., Vystorop, V.V., & Kolchin, A.M. (1984). Malootkhodnaya tekhnologiya dobychi uglya. Kiev, Ukraina: Tekhnika.
  14. Zhukov, V.Ye. (2001). Ob odnoy strategicheskoy oshibke v razreshenii problemy razrabotki krutykh plastov. Ugol’ Ukrainy, (7), 6-10.
  15. Zborshchik, M.P., & Podkopayev, S.V. (1992) Mekhanizm povysheniya ustoychivosti krovli v lavakh pri primenenii zakladki vyrabotannogo prostranstva. Ugol’ Ukrainy, (5), 20-23.
  16. Iordanov, I., Simonova, Y., Kayun, O., Podkopayev, Y., Polozhii, A., & Boichenko, H. (2020). Substantiation of the stability of haulage drifts with protective structures of different rigidity. Eastern-European Journal of Enterprise Technologies, 3(7(105)), 87-96.https://doi.org/10.15587/1729-4061.2020.202483
  17. Kazikayev, D.M., Kozyrev, A.A., Kaspar’yan, E.V., & Iofis, M.A. (2016). Upravleniye geomekhanicheskimi protsessami pri razrabotke mestorozhdeniy poleznykh iskopayemykh. Moskva, Rossiya: Gornaya kniga.
  18. Podkopaiev, S., Iordanov, I., & Chepiha, D. (2017). Stability of the coal seam roof during the sudden collapse of lateral rocks. Mining of Mineral Deposits, 11(3), 101-110.https://doi.org/10.15407/mining11.03.101
  19. Sipidin, V.P., & Sidorov, N.N. (1963). Issledovaniye gruntov v usloviyakh trekhosnogo szhatiya. Moskva, Rossiya: Gosizdatel’stvo po stroitel’stvu, arkhitekture i stroitel’nym mterialam.
  20. Ter-Martirosyan, Z.G., Mirnyy, A.Yu., & Dzharo, M.N. (2012). Opredeleniye prochnykh kharakteristik nesvyazannykh gruntov pri kompressionnykh ispytaniyakh. Internet-Vestnik VolgGASU, (3), 1-6.
  21. Wesley, L.D. (2009). Fundamentals of soil mechanics for sedimentary and residual soils. Hoboken, New Jersey, United States:https://doi.org/10.1002/9780470549056
  22. Krupnik, L.A., Shaposhnik, Y.N., Shaposhnik, S.N., & Tursunbaeva, A.K. (2013). Backfilling technology in Kazakhstan mines. Journal of Mining Science, 49(1), 82-89.https://doi.org/10.1134/s1062739149010103
  23. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered mass deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44.https://doi.org/10.1201/b13157-8
  24. Abdiev, A., Mambetova, R., Abdiev, A., & Abdiev S. (2020). Development of methods for assessing the mine workings stability. E3S Web of Conference. Preprint.
  25. Tsytovich, N.A. (1983). Mekhanika gruntov. Moskva: Vysshaya shkola.
  26. Craing, R.F. (1997). Soil mechanics. London, United Kingdom: Spon Press.
  27. Robitalle, V., & Tremblay, D. (1997). Mecanique des sols: Theorie et pratique. Canada: Science.
  28. Borsch, N.I. (2009). Soil mechanics. Omsk, Rossiya: SibADI.
  29. Podkopayev, S.V., Gavrish, N.N., Deglin, B.M., & Kamenets, V.I. (2012). Laboratornyy praktikum po kursu “Mekhanika gornykh porod”. Donetsk, Ukraina: DonNTU.
  30. Tsirel’, C.B., Gaponov, Yu.S., & Shokov, A.N. (2013). Otsenka vliyaniya granulometricheskogo sostava na szhimayemost’ i pustotnost’ zakladochnogo materiala. Gornyy Informatsionno-Analiticheskiy Byulleten’, (12), 80-83.
  31. Anikeyenko, A.V., & Medvedev, N.N. (2007). Strukturnyy analiz monodispersnykh upakovok tverdykh sfer pri raznoy plotnosti. Struktura i Dinamika Molekulyarnykh Sistem, (1), 700-705.
  32. Bertail, P., Soulier, P., & Doukhan, P. (2006). Dependence in probability and statistics. Lecture Notes in Statistics. Berlin, Germany: Springer.https://doi.org/10.1007/0-387-36062-x
  33. Mirnyy, A.Yu., & Ter-Martirosyan, A.Z. (2014) Podbor granulometricheskogo sostava peschano-graviynykh smesey dlya peschanykh podushek i nasypey. Zhilishchnoye Stroitel’stvo, (9), 43-49.
  34. Yakobi, O. (1981). Praktika upravleniya gornym davleniyem. Moskva, Rossiya: Nedra.
  35. Kobayashi, H., Mark, B.L., & Turin, W. (2009). Probability, random processes, and statistical analysis. Cambridge, United Kingdom: Cambridge University Press.https://doi.org/10.1017/cbo9780511977770
  36. Ishibashi, I., & Hazarika, H. (2015). Soil mechanics fundamentals and applications. London, United Kingdom: CRC Press.https://doi.org/10.1201/b18236
  37. Лицензия Creative Commons