Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Improving the technology of uranium mining under the conditions of high groundwater pressure

Yernur Omarbekov1, Khalidilla Yussupov1

1Satbayev University, Almaty, 50013, Kazakhstan


Min. miner. depos. 2020, 14(3):112-118


https://doi.org/10.33271/mining14.03.112

Full text (PDF)


      ABSTRACT

      Purpose. Substantiation of technological solutions for uranium mining by the method of In-Situ Leach Mining (ISL) under the conditions of the high groundwater pressure.

      Methods. Analysis of mining-and-geological conditions of the deposit, conducting experimental-industrial works at the experimental unit, and processing data from research results. To increase the efficiency and reduce the expenditures for in-situ leach mining of uranium, taking into account the hydrogeological peculiarities of the deposit, experimental works have been conducted using the “pumping wells” technology.

      Findings. The proposed technology helps to reduce the expenditures for acquiring cable products, submersible pumps (the cost of a more powerful pump is much less than the cost of several ones, which are equal to it in power), for the construction of well heads. The dependences have been obtained of the change in the uranium content in the pregnant solution and the recovery coefficient on the L:S ratio (liquid to solid) using the “pumping wells” technology. With a change in L:S from 0.1 to 0.33, the uranium content in the pregnant solution increases from 5 to 225 mg/l, then its gradual decrease is observed. A change in L:S from 0.9 to 2.2 leads to an insignificant change in the uranium content to 100-120 mg/l.

      Originality.Based on the research results, the dependences have been obtained of the change in the uranium content in the pregnant solution and the recovery coefficient on the ratio of L:S using the “pumping wells” technology. The recovery coefficient has changed in direct proportion to the L:S ratio, hence, for L:S from 0.1 to 2, the recovery coefficient increa-ses from 1 to 87%.

      Practical implications. A new technology for uranium mining by the method of underground leaching has been developed, which is characterized by low capital expenditures and producing costs of in-situ leach mining of uranium.

      Keywords: uranium, leaching, well, recovery


      REFERENCES

  1. World energy outlook. (2019). International Energy Agency.https://doi.org/10.1787/caf32f3b-en
  2. Mounfield, P.R. (2017). World nuclear power. Routledge.https://doi.org/10.4324/9781315141657
  3. Hore-Lacy, I. (2010). Nuclear energy in the 2st century. World Nuclear University Press, Elsevier.
  4. Zubkova, V., Strojwas, A., Bielecki, M., Kieush, L., & Koverya, A. (2019). Comparative study of pyrolytic behavior of the biomass wastes originating in the Ukraine and potential application of such biomass. Part 1. Analysis of the course of pyrolysis process and the composition of formed products. Fuel, (254), 115688.https://doi.org/10.1016/j.fuel.2019.115688
  5. Mounfield, P.R. (2017). The world pattern of nuclear power production. World Nuclear Power, 28-62.https://doi.org/10.4324/9781315141657-3
  6. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, 103(39), 14288-14293.https://doi.org/10.1073/pnas.0606291103
  7. Ruela, R., Sousa, M.C., deCastro, M., & Dias, J.M. (2020). Global and regional evolution of sea surface temperature under climate change. Global and Planetary Change, (190), 103190.https://doi.org/10.1016/j.gloplacha.2020.103190
  8. Kieush, L. (2019). Coal pyrolysis products utilisation for synthesis of carbon nanotubes. Petroleum and Coal, 61(3), 461-466.
  9. Kalyuzhnova, Y., & Pomfret, R. (2017). Sustainable energy in Kazakhstan: Moving to cleaner energy in a resource-rich country (pp. 1-286).https://doi.org/10.4324/9781315267302
  10. Karatayev, M., & Clarke, M.L. (2014). Current energy resources in Kazakhstan and the future potential of renewables: A review. Paper presented at the Energy Procedia, (59), 97-104.https://doi.org/10.1016/j.egypro.2014.10.354
  11. Rakishev, B.R. (2017). Technological resources for improving the quality and completeness of use of the mineral raw materials. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(422), 116-124.
  12. Kazakhstan to become key uranium player. (2005). Nuclear Engineering International, 50(617), 3.
  13. Transportation – quick takes: China, Kazakhstan sign accords for gas, uranium. (2010). Oil and Gas Journal, 108(25), 11.
  14. Vypolnyaya obeshchaniya. Sozdavaya stoimost’. (2018). Godovoy otchet. AO “NAK “Kazatomprom”.
  15. Rakishev, B.R., Mataev, M.M., & Kenzhetaev, Z.S. (2019). Analysis of mineralogical composition of sediments in in-situ leach mining of uranium. Mining Informational and Analytical Bulletin, (7), 123-131.https://doi.org/10.25018/0236-1493-2019-07-0-123-131
  16. Kuznetsova, A., Doulala-Rigby, C., Solovyev, G., & Orlov, E. (2017). Implication of the mechanically stabilised granular layer for access road over saline soils at uranium in situ leaching mine in South Kazakhstan. Bearing Capacity of Roads, Railways and Airfields, 1121-1126.https://doi.org/10.1201/9781315100333-150
  17. Takenouchi, S. (1996). Sandstone-type uranium deposits in Kazakhstan – in connection with in-situ leaching method. Resource Geology, 46(4), 233-243.
  18. Abzalov, M.Z., Drobov, S.R., Gorbatenko, O., Vershkov, A.F., Bertoli, O., Renard, D., & Beucher, H. (2014). Resource estimation ofin situleach uranium projects. Applied Earth Science, 123(2), 71-85.https://doi.org/10.1179/1743275814y.0000000055
  19. Mudd, G. (2001). Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environmental Geology, 41(3-4), 390-403.https://doi.org/10.1007/s002540100406
  20. Zhou, Q.S., & Li, Z.Y. (2003). Geological characteristics and ore prospects of underground leaching sandstone-type uranium deposits on the southwestern margin of the Turpan-Hami basin. Geology in China, 30(2), 186-191.
  21. Shatalov, V.V., Fazlullin, M.I., Romashkevich, R.I., Smirnova, R.N., & Adosik, G.M. (2001). Ecological safety of underground leaching of uranium. Atomic Energy, 91(6), 1009-1015.https://doi.org/10.1023/a:1014815705034
  22. Golik, V.I., Razorenov, Y.I., & Lyashenko, V.I. (2018). Conditions of leaching non-ferrous metals from non-commercial reserves. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 329(6), 6-16.
  23. Mudd, G. (2001). Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia. Environmental Geology, 41(3-4), 404-416.https://doi.org/10.1007/s002540100405
  24. Wadden, D., & Gallant, A. (1985). The in-place leaching of uranium at Denison mines. Canadian Metallurgical Quarterly, 24(2), 127-134.https://doi.org/10.1179/cmq.1985.24.2.127
  25. Lietava, P. (2000). Risk-assessment model for evaluating environmental remediation options at the Stráž underground uranium leaching site. The Environmental Challenges of Nuclear Disarmament, 191-204.https://doi.org/10.1007/978-94-011-4104-8_23
  26. Chekmarev, A.M., Troshkina, I.D., Nesterov, Y.V., Maiboroda, A.B., Ushanova, O.G., & Smirnov, N.S. (2004). Associated rhenium extraction in complex processing of productive solutions of underground uranium leaching. Chemistry for Sustainable Development, (12), 113-117.
  27. Rodionov, V.G. (2010). Energetika: problemy nastoyashchego i vozmozhnosti budushchego. Moskva, Rossiya: ENAS.
  28. Catchpole, M., & Robins, W. (2015). Future global energy demand. AusIMM Bulletin.
  29. Sondor, D.V. (2014). Uran: zapasy, dobycha, perspektivy, problemy. Sostoyanie i puti razvitiya rossiyskoy energetiki. Tomsk, Rossiya: Skan.
  30. Aben, E., Markenbayev, Z., Khairullaev, N., Myrzakhmetov, S., & Aben, K. (2019). Study of change in the leaching solution activity after treatment with a cavitator. Mining of Mineral Deposits, 13(4), 114-120.https://doi.org/10.33271/mining13.04.114
  31. Slezak, J. (2008). Uranium ISL mining activities at the international atomic energy agency. Uranium, Mining and Hydrogeology, 1-10.https://doi.org/10.1007/978-3-540-87746-2_1
  32. Yusupov, Kh.A., & Dzhakupov, D. (2017). Issledovanie primeneniya biftorida ammoniya dlya khimicheskoy obrabotki skvazhin. Gornyy Zhurnal, (4), 57-59.
  33. Omarbekov, E.U, El’zhanov, E.A, & Myrzakhmetov, S.S. (2017). Sovershenstvovanie tekhnologii pri dobyche urana metodom PSV. Nauchnoe i Kadrovoe Soprovozhdenie Innovatsionnogo Razvitiya Gorno-Metallurgicheskogo Kompleksa, 60-62.
  34. Lyashenko, V.I., Franchuk, V.P., & Kisly, B.P. (2015). Reengineering of technical-and-technological structure of uranium mine. Gornyi Zhurnal, (1).https://doi.org/10.17580/gzh.2015.01.05
  35. Lyashenko, V.I. (2005). Environment and resource saving methods of inventory control of uranium mines and deposits. Metallurgicheskaya i Gornorudnaya Promyshlennost, (1), 122-127.
  36. Molchanov, A.A., & Demekhov, Yu.V. (2014). Povyshenie effektivnosti dobychi urana iz mestorozhdeniy gidrogennogo tipa, razrabatyvaemykh metodom podzemnogo skvazhinnogo vyshchelachivaniya Respubliki Kazakhstan (na primere mestorozhdeniya vostochnyy Mynkuduk). Aktual’nye Problemy Uranovoy Promyshlennosti, 92-98.
  37. Khawassek, Y., Taha, M., & Eliwa, A. (2016). Kinetics of leaching process using sulfuric acid for Sella uranium ore material, South Eastern Desert, Egypt. International Journal of Nuclear Energy Science and Engineering, 6(0), 62.https://doi.org/10.14355/ijnese.2016.06.006
  38. Filippov, A.P., & Nesterov, Yu.V. (2001). Lignosul’fonat ammoniya – dobavka, intensifitsiruyushchaya sernokislotnoe vyshchelachivanie urana iz rud. Khimicheskaya Tekhnologiya, (8), 21-25.
  39. Panteleev, V.M. (2002). Ful’vokislotnyy rastvoritel’ dlya podzemnogo i kuchnogo vyshchelachivaniya urana (povysheniya effektivnosti proizvodstva ekologicheski bezopasnymi sposobami). Moskva, Rossiya: Nedra.
  40. Kanevskiy, E.A., Filipov, A.P., & Vel’matkin, M.I. (1963). Optimal’naya oblast’ pH pri sernokislotnom rastvorenii dvuokisi urana s uchastiem razlichnykh okisliteley i ionov Fe(II). Radiokhimiya, 5(6), 1-7.
  41. Golik, V.I., & Kultyshev, V.I. (2011). Istoriya i perspektivy vyshchelachivaniya urana. Gornyy Informatsionno-Analiticheskiy Byulleten’, (7), 138-143.
  42. Yashin, S.A. (2008). Podzemnoe skvazhinnoe vyshchelachivanie urana na mestorozhdeniyakh Kazakhstana. Gornyy Zhurnal, (3), 45-49.
  43. Ismailov, T.T., Golik, V.I., & Dol’nikov, E.B. (2008). Spetsial’nye sposoby razrabotki mestorozhdeniy poleznykh iskopaemykh. Moskva, Rossiya: Izdatel’stvo Moskovskogo gosudarstvennogo gornogo universiteta.
  44. Golik, V.I., & Kultyshev, V.I. (2011). Istoriya i perspektivy vyshchelachivaniya urana. Gornyy Informatsionno-Analiticheskiy Byulleten’, (7), 138-143.
  45. Bekman, I.N. (2009). Uranovoe proizvodstvo. Moskva, Rossiya: Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova.
  46. Rukin, A.A. (2017). Tekhnologiya i tekhnika bureniya razvedochno-ekspluatatsionnykh skvazhin na uran na uchastke “Zhalpakskom” (p. Kyzemshek Yuzhno-Kazakhstanskaya oblast’). Tomsk, Rossiya: Institut prirodnykh resursov.
  47. Khan, Y., Sakhawat, S., & Muhammad, S. (2012). Selection of lixiviante system for the alkaline in situ leaching of uranium from an arkosic type of sandstone and measuring the dissolution behavior of some metals and nonmetals. Journal Chemical Society of Pakistan, (34), 826-840.
  48. Malukhin, N.G., & Markelov, S.V. (2011). Obosnovanie ratsional’noy oblasti primeneniya tekhnologii podzemnogo vyshchelachivaniya glinistykh uranovykh rud. Gornyy Informatsionno-Analiticheskiy Byulleten’, (10), 223-225.
  49. Zhiganov, A.N, Noskov, M.D., Istomin, A.D., Kesler, A.G., & Nevzorova, N.S. (2009). Geotekhnologicheskiy informatsionno-modeliruyushchiy kompleks dlya optimizatsii protsessa podzemnogo vyshchelachivaniya urana. Izvestiya Tomskogo Politekhnicheskogo Universiteta, 3(308), 78-83.
  50. Noskov, M.D., Kesler, A.G., Noskova, S.N., & Terovskaya, T.S. (2017). Primenenie geotekhnologicheskogo modelirovaniya dlya povysheniya effektivnosti podzemnogo vyshchelachivaniya urana. Aktual’nye Problemy Uranovoy Promyshlennosti, 108-113.
  51. Norov, Yu.D., Yuldashev, U.U., Karimov, E.L., Fursov, A.I., & Khudoyarov, A.S. (2012). Sposoby vozdeystviya na prifil’trovuyu zonu produktivnogo plasta pri podzemnom vyshchelachivanii urana. Gornyy Vestnik Uzbekistana, 1-10.
  52. Woods, P. (2017). Feasibility through mining to closure: balancing the realities and expectations of uranium mining, and application to other commodities. AusIMM Adelaide and Roxby Downs Branches, South Australia.
  53. Yazikov, V.G., Zabaznov, V.L., Petrov, N.N., & Rogov, A.E. (2001). Geotekhnologiya urana na mestorozhdeniyakh Kazakhstana. Almaty, Kazakhstan: Alma.
  54. Лицензия Creative Commons