Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Certain aspects concerning the development of a functioning scheme of the auto-mated system to control energy flows of underground iron-ore enterprises

Oleh Sinchuk1, Andrii Kupin1, Ihor Sinchuk1, Mykhailo Rohoza2, Petro Plіeshkov3

1Kryvyi Rih National University, Kryvyi Rih, 50027, Ukraine

2Dnipro University of Technology, Dnipro, 49005, Ukraine

3Central Ukrainian National Technical University, Kropyvnytskyi, 25006, Ukraine


Min. miner. depos. 2020, 14(3):101-111


https://doi.org/10.33271/mining14.03.101

Full text (PDF)


      ABSTRACT

      Purpose is to develop a functioning scheme of ACS for energy flows in terms of invariability of electric power consumption as well as inversion of energy flows of mining enterprises in the current time of day to decrease power cost segment in the context of еру prime cost of iron ore raw materials (IORM) extraction.

      Methods. Data of a passive experiment have been applied to obtain operational statistics of iron-ore mines. Then fuzzy logic has been applied to identify linguistic terms on the required technological parameters; and procedures of fuzzification, logical derivation and defuzzification have been performed. Principles to form basis of fuzzy rules have been determined to enable decision-making automation using Mamdani method. As a result, fuzzy controllers have been synthesized; and their performance has been modeled in the environment of a software package MatLab. The basic modeling results have been visualized using MS Excel.

      Findings. System of control criteria system has been substantiated; and vectors of an object condition vector, the basic information parameters, controlling influence and disturbances have been defined. Approaches to optimize power consumption process basing upon еру minimax functionals, use of restriction system, and calculation of rational settings have been analyzed. Algorithms of the automated control have been developed using several strategies and criteria. Implementation principles of the algorithm have been proposed on the basis of fuzzy logic use.

      Originality.Efficiency of fuzzy systems to control energy flows of mines has been proved under the conditions of one- and multi-channel regulating process. The basic analytical indices have been obtained supporting unambiguously both sufficient quality and efficiency of the automated control systems to be used for underground mining of iron ore.

      Practical implications. Structural patterns and means of practical implementation of fuzzy controllers have been proposed for industrial environment application. Calculations have proved that the approaches will help implement the automated control of energy consumption by a mine in real time, and optimize expenditures connected with the consumed electric energy.

      Keywords: automated control of energy flows, fuzzy logic, control system, three-zone tariff


      REFERENCES

  1. Vilkul, Yu., Azaryan, A., Kolosov, V., Karamanyts, F., & Batareev, A. (2015). Suchasnyi stan zalizorudnoi haluzi, prohnoz rozvytku ta propozytsii. Kachestvo Mineral’nogo Syr’ya, 9-24.
  2. Babets, Ye., Melnikova, I., & Grebenyuk, S. (2015). Doslidzhennia tekhniko-ekonomichnykh pokaznykiv hirnychodobuvnykh pidpryiemstv Ukrainy ta efektyvnosti ikh roboty v umovakh zminnoi koniuktury svitovoho rynku zalizorudnoi syrovyny. Kryvyi Rih, Ukraina: NDGRI DVNZ “KNU”.
  3. Sinchuk, I., Boiko, S., Baranovska, М., Kozakevich, I., Syomochkyn, А., Kalmus, D., Peresunko, I., Vinnik, М., Lokhman, N., & Chorna, V. (2019). Brief commentaries on the problem of power consumption management at iron ore underground mines. Warsaw, Poland: Science.
  4. Sinchuk, I. (2018). Harmonization of modeling systems for assessing the electric-power consumption levels at mining enterprises. Mining of Mineral Deposits, 12(4), 100-107.https://doi.org/10.15407/mining12.04.100
  5. Zakon Ukrainy “Pro rynok elektrychnoi enerhii” vid 13.04.2017 #2019-VIII. (2017). Kyiv, Ukraina: VRU.
  6. Patterson, S.R., Kozan, E., & Hyland, P. (2015). An integrated model of an open-pit coal mine: improving energy efficiency decisions. International Journal of Production Research, 54(14), 4213-4227.https://doi.org/10.1080/00207543.2015.1117150
  7. De Souza, E. (2015). Improving the energy efficiency of mine fan assemblages. Applied Thermal Engineering, (90), 1092-1097.https://doi.org/10.1016/j.applthermaleng.2015.04.048
  8. Muller, S.C., Hager, U., & Rehtanz, C. (2014). A multiagent system for adaptive power flow control in electrical transmission systems. IEEE Transactions on Industrial Informatics, 10(4), 2290-2299.https://doi.org/10.1109/tii.2014.2315499
  9. Ivashchenko, V. (2005.) Teoretiko-metodologicheskie osnovy, metody i matematicheskie modeli upravleniya elektropotrebleniem promyshlennykh predpriyatiy. Vestnik SGTU, (2), 100-113.
  10. Liu, B., Wu, W., Zhou, C., Mao, C., Wang, D., Duan, Q., & Sha, G. (2019). An AC-DC hybrid multi-port energy router with coordinated control and energy management strategies. IEEE Access, (7), 109069-109082.https://doi.org/10.1109/access.2019.2933469
  11. Reyes-Chamorro, L., Bernstein, A., Bouman, N.J., Scolari, E., Kettner, A.M., Cathiard, B., & Paolone, M. (2018). Experimental validation of an explicit power-flow primary control in microgrids. IEEE Transactions on Industrial Informatics, 14(11), 4779-4791.https://doi.org/10.1109/tii.2018.2802907
  12. An initiative of the risk response network. (2012). Global Risks, (7), 1-7.
  13. Wu, T.-Y., Shieh, S.-S., Jang, S.-S., & Liu, C.C.L. (2005). Optimal energy management integration for a petrochemical plant under considerations of uncertain power supplies. IEEE Transactions on Power Systems, 20(3), 1431-1439.https://doi.org/10.1109/tpwrs.2005.852063
  14. Tabart, Q., Vechiu, I., Etxeberria, A., & Bacha, S. (2018). Hybrid energy storage system microgrids integration for power quality improvement using four-leg three-level NPC inverter and second-order sliding mode control. IEEE Transactions on Industrial Electronics, 65(1), 424-435.https://doi.org/10.1109/tie.2017.2723863
  15. Dasgupta, S., Mohan, S.N., Sahoo, S.K., & Panda, S.K. (2013). Lyapunov function-based current controller to control active and reactive power flow from a renewable energy source to a generalized three-phase microgrid system. IEEE Transactions on Industrial Electronics, 60(2), 799-813.https://doi.org/10.1109/tie.2012.2206356
  16. Stevanoni, C., De Greve, Z., Vallee, F., & Deblecker, O. (2019). Long-term planning of connected industrial microgrids: a game theoretical approach including daily peer-to-microgrid exchanges. IEEE Transactions on Smart Grid, 10(2), 2245-2256.https://doi.org/10.1109/tsg.2018.2793311
  17. Zakharova, A. (1982). O zakonakh raspredeleniya vremeni bezotkaznoy raboty i vremeni vosstanovleniya elementov sistemy elektrosnabzheniya ugol’nykh razrezov. Sbornik Nauchnykh Trudov MEI, (7), 124-131.
  18. Li, S., Yu, X., Fridman, L., Man, Z., & Wang, X. (2018). Advances in variable structure systems and sliding mode control – theory and applications. Studies in Systems, Decision and Control.https://doi.org/10.1007/978-3-319-62896-7
  19. Van Schuppen, J.H., & Villa, T. (2015). Coordination control of distributed systems. Lecture Notes in Control and Information Sciences.https://doi.org/10.1007/978-3-319-10407-2
  20. Mohammadpour, J., & Grigoriadis, K.M. (2010). Efficient modeling and control of large-scale systems.https://doi.org/10.1007/978-1-4419-5757-3
  21. Singh, S.N., Wen, F., & Jain, M. (2019). Advances in system optimization and control. Lecture Notes in Electrical Engineering.https://doi.org/10.1007/978-981-13-0665-5
  22. Qi, R., Tao, G., & Jiang, B. (2019). Fuzzy system identification and adaptive control. Communications and control engineering.https://doi.org/10.1007/978-3-030-19882-4
  23. Zhang, Y., Hong, M., Dall’Anese, E., Dhople, S.V., & Xu, Z. (2018). Distributed controllers seeking an optimal power flow solutions using ADMM. IEEE Transactions on Smart Grid, 9(5), 4525-4537.https://doi.org/10.1109/tsg.2017.2662639
  24. Leonchikov, A. (2003). Nechetkoe modelirovanie v srede MATLAB i fuzzy TECH. Sankt-Peterburg, Rossiya: BHV-Sankt-Peterburg.
  25. Jin, H., Li, Z., Sun, H., Guo, Q., & Wang, B. (2019). Coordination on industrial load control and climate control in manufacturing industry under TOU prices. IEEE Transactions on Smart Grid, 10(1), 139-152.https://doi.org/10.1109/tsg.2017.2733578
  26. Kupin, A., & Senko, A. (2015). Principles of intellectual control and classification optimization in conditions of technological processes of beneficiation complexes. CEUR Workshop Proceedings, (1356), 153-160.
  27. Kupіn, A., Vdоvіchеnkо, І., Muzуka, І., & Kuznеtsоv, D. (2017). Development of an intelligent system for the prоgnоstіcatіоn оf еnеrgу prоducеd bу phоtоvоltaіc cеlls іn smart grіd sуstеms. Еastеrn-Еurоpеan Jоurnal оf Еntеrprіsе Tеchnоlоgіеs, 5(8(89)), 4-9.
  28. Лицензия Creative Commons