Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Mineral raw material disintegration mechanisms in ball mills and distribution of grinding energy between sequential stages

Petr Malyarov1, Oleksandr Dolgov2, Pavel Kovalev3

1Platov South Russian State Polytechnic University, Novocherkassk, 346428, Russian Federation

2Dnipro University of Technology, Dnipro, 49005, Ukraine

3LLC “Resurs”, Stavropol, 355000, Russian Federation


Min. miner. depos. 2020, 14(2):25-33


https://doi.org/10.33271/mining14.02.025

Full text (PDF)


      ABSTRACT

      Purpose. To study the mechanism of mineral raw material particles destruction, the rational distribution of grinding energy between successive grinding stages in ball mills, and the development of engineering methods for redistribution of technological flows in grinding schemes to reduce specific energy consumption.

      Methods. Experimental studies of the breakage mechanism were carried out using a physical model of a ball mill operated in the batch mode taking into account the similarity theory. For comparative studies of dry and wet grinding, quartz sand and crushed marble products with a particle size of +0.25…–0.5 mm were used. The selection of the grinding energy distribution rational parameters between successive stages of ball grinding was carried out by general testing at the concentrator plants of Armenia, Russia, and Uzbekistan.

      Findings. The materials resulting from studying processes of grinding mineral raw materials in ball mills are presented. It was established that the mineral raw particles destruction in ball mills occurs within the layer as a result of the layers discrete sliding of the ball charge along the ascending trajectories while effectively filling the free space between the balls with the material to be crushed. A technique was developed for evaluating the efficiency of grinding energy distribution between successive stages on the basis of the established laws of mineral raw material particles destruction. Methods for redistributing the grinding energy between the first and second grinding stages are proposed. The methods for the rational distribution of grinding energy between mills of the first and second stages, using drum screens, was developed and implemented in the practice of concentrator plants.

      Originality.The authors established the dependences of the grinding material content of the size –100 μm on the free space filling coefficient with the material for sand and marble during dry and wet grinding. The mechanism of the mineral raw particle destruction in the layer during discrete sliding between the charge layers on the ascending trajectories is disclosed.

      Practical implications.The proposed methodology for evaluating the efficiency of grinding energy distribution made it possible to develop and implement into the concentrator plants practice the techniques for redistributing grinding energy between successive stages with significant economic effect.

      Keywords: mill, grinding, slippage, grinding energy, drum screen


      REFERENCES

  1. Antsiferov, A.V., Zubkova, V.T., Kameneva, S.A., Svetkina, E.Y., & Franchuk, V.P. (1998). The use of vertical vibrating mill for grinding and mixing of components of carbide steel. Xiaoxing Weixing Jisuanji Xitong/Mini-Micro Systems, 19(12), 4-8.
  2. Van der Wielen, K.P., Pascoe, R., Weh, A., Wall, F., & Rollinson, G. (2013). The influence of equipment settings and rock properties on high voltage breakage. Minerals Engineering, 46-47, 100-111. https://doi.org/10.1016/j.mineng.2013.02.008
  3. Franchuk, V.P., & Svetkina, E.Y. (1993). Peculiarities of silicon and titanium carbide grinding in the vibrating mill. Poroshkovaya Metallurgiya, (2), 5-7.
  4. Reichert, M., Gerold, C., Fredriksson, A., Adolfsson, G., & Lieberwirth, H. (2015). Research of iron ore grinding in a vertical-roller-mill. Minerals Engineering, (73), 109-115.https://doi.org/10.1016/j.mineng.2014.07.021
  5. Pilov, P., Gorobets, L., & Pryadko, N. (2009). Research of acoustic monitoring regularities in a jet grinding process. Archives of Mining Sciences, 54(4), 841-848.
  6. Shcherbakov, P., Tymchenko, S., Buhrym, O., & Klymenko, D. (2019). Research into the crushing and grinding processes of iron ore with its simultaneous effect by mechanical load and electric field of ultra-high frequency. E3S Web of Conferences, (123), 01030.https://doi.org/10.1051/e3sconf/201912301030
  7. Gupta, V.K., & Sharma, S. (2014). Analysis of ball mill grinding operation using mill power specific kinetic parameters. Advanced Powder Technology, 25(2), 625-634.https://doi.org/10.1016/j.apt.2013.10.003
  8. Pivnyak, G.G., Vaysberg, L.A., Kirichenko, V.I., Pilov, P.I. & Kirichenko, V.V. (2007). Izmel’chenie. Energetika i tekhnologiya. Moskva, Rossiya: Ruda i metally.
  9. Pivnyak, G.G., Beshta, A.S., & Khilov, V.S. (2004). Control of a drive rotation and milling cutter drilling on a basis of asymptotic identifier of state. Elektrotekhnika, (6), 42-45.
  10. Pivnyak, G.G., Kirichenko, V.I., Pilov, P.I., Kirichenko, V.V., Borodai, V.A. (2011). Creation of new generation energy-intensive tumbling mill. Metallurgical and Mining Industry, 3(4), 169-172.
  11. Kanda, Y., Simodaira, K., Kotake, N., & Abe, Y. (1999). Experimental study on the grinding rate constant of a ball mill: effects of feed size and ball diameter. KONA Powder and Particle Journal, 17(0), 220-226.https://doi.org/10.14356/kona.1999030
  12. Soda, R., Sato, A., Kano, J., & Saito, F. (2014). Development of prediction method of wear rate during wet stirred milling by using DEM. Journal of the Society of Powder Technology, Japan, 51(6), 436-443.https://doi.org/10.4164/sptj.51.436
  13. Monov, V., Sokolov, B., & Stoenchev, S. (2012). Grinding in ball mills: modeling and process control. Cybernetics and Information Technologies, 12(2), 51-68.https://doi.org/10.2478/cait-2012-0012
  14. Malyarov, P.V., Kovalev, P.A. Bochkarev, A.V., & Dolgov, A.M. (2018). Issledovanie vliyaniya mekhanizmov razrusheniya mineral’nogo syr’ya v sharovykh mel’nitsakh. Obogashchenie Rud, (3), 3-8.
  15. Malyarov, P.V., Stepurin, V.F., Soldatov, G.M., & Konnik, N.D. (2006). Pereraspredelenie energii izmel’cheniya mezhdu stadiyami v usloviyakh Urupskogo GOKa. Obogashchenie Rud, (3), 18-20.
  16. Malyarov, P.V., Soldatov, G.M., Kaytmazov, N.G., Baskaev, P.M., Ivanov, V.A., & Kotenev, D.V. (2008). Intensifikatsiya protsessov izmel’cheniya v usloviyakh Talnakhskoy obogatitel’noy fabriki. Obogashchenie Rud, (6), 6-10.
  17. Dortman, N.B. (1984). Fizicheskie svoystva gornykh porod i poleznykh iskopaemykh (Petrofizika). Moskva, Rossiya: Nedra.
  18. Abisheva, Z.S., Blaida, I.A., Ponomareva, E.I., & Rozen, A.M. (1995). Effect of amine structure on gallium extraction from hydrochloric acid solutions. Hydrometallurgy, 37(3), 393-399.https://doi.org/10.1016/0304-386x(94)00016-v
  19. Agapova, L.Y., Ponomareva, E.I., & Abisheva, Z.S. (2001). Production of concentrated rhenium acid by electrodialysis of rhenium salts solutions. Hydrometallurgy, 60(2), 117-122.https://doi.org/10.1016/s0304-386x(00)00192-4
  20. Abisheva, Z.S., Karshigina, Z.B., Bochevskaya, Y.G., Akcil, A., Sargelova, E.A., Kvyatkovskaya, M.N., & Silachyov, I.Y. (2017). Recovery of rare earth metals as critical raw materials from phosphorus slag of long-term storage. Hydrometallurgy, (173), 271-282.https://doi.org/10.1016/j.hydromet.2017.08.022
  21. Fedotov, P. (2014). Simulation of particle size distribution of the ore destruction product in the particle layer. Proceedings of the XXVII International Mineral Processing Congress, (10), 1-10.
  22. Fedotov, P.K. (2014). Modelirovanie protsessa razrusheniya rudy v sloe chastits pod davleniem. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (4), 71-77.
  23. Rakishev, B.R., & Galiev, D. A. (2015). Optimization of the ore flow quality characteristics in the quarry in road-rail transport. Metallurgical and Mining Industry, 7(4), 356-362.
  24. Bargteil, A.W., & Cohen, E. (2014). Animation of deformable bodies with quadratic Bezier finite elements. ACM Transactions on Graphics, 33(3), 1-10.https://doi.org/10.1145/2567943
  25. Stavrogin, A.N., & Tarasov, B.G. (2001). Experimental physics and rock mechanics. United Kingdom: CRC Press, Taylor & Francis Group.
  26. Tuzcu, E.T., & Rajamani, R.K. (2011). Modeling breakage rates in mills with impact energy spectra and ultra fast load cell data. Minerals Engineering, 24(3-4), 252-260.https://doi.org/10.1016/j.mineng.2010.08.017
  27. Khopunov, E.A. (2016). Problemy modelirovaniya dezintegratsii rud. Sovremennye Nauchnye Issledovaniya i Innovatsii, (1), 1-11.
  28. Khopunov, E.A. (2016). Problemy modelirovaniya dezintegratsii rud. Sovremennye Nauchnye Issledovaniya i Innovatsii, (1), 1-11.
  29. Lvov, V.V., & Chitalov, L.S. (2019). Comparison of the different ways of the ball Bond work index determining. International Journal of Mechanical Engineering and Technology (IJMET), 10(4), 285-299.
  30. Nikolaeva, N., Aleksandrova, T., & Romashev, A. (2017). Effect of grinding on the fractional composition of polymineral laminated bituminous shales. Mineral Processing and Extractive Metallurgy Review, 39(4), 231-234.https://doi.org/10.1080/08827508.2017.1415207
  31. Erdem, A.S., & Ergün, Ş.L. (2009). The effect of ball size on breakage rate parameter in a pilot scale ball mill. Minerals Engineering, 22(7-8), 660-664.https://doi.org/10.1016/j.mineng.2009.01.015
  32. Lvov, V.V., & Aleksandrova, T.N. (2016). Automated control of hydrocyclone classification. Gornyi Zhurnal, (5), 94-96.https://doi.org/10.17580/gzh.2016.05.14
  33. Aleksandrova, T., Nikolaeva, N., Lieberwirth, H., & Aleksandrov, A. (2018). Selective desintegration and concentration: theory and practice. E3S Web of Conferences, (56), 03001.https://doi.org/10.1051/e3sconf/20185603001
  34. Fuerstenau, D.W., De, A., & Kapur, P.C. (2004). Linear and nonlinear particle breakage processes in comminution systems. International Journal of Mineral Processing, (74), S317-S327.https://doi.org/10.1016/j.minpro.2004.07.005
  35. Лицензия Creative Commons