Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Restoration of the tribotechnical pairs in equipment of mining industry

M. Biloshytskyi1, H. Tatarchenko1, N. Biloshytska1

1Volodymyr Dahl East Ukrainian National University, Sievierodonetsk, Ukraine


Min. miner. depos. 2019, 13(3):68-75


https://doi.org/10.33271/mining13.03.068

Full text (PDF)


      ABSTRACT

      Purpose. Substantiation of the possibilities and development of technology for the restoration of the worn-out tribotechnical pairs of mining equipment by methods of hot radial stamping in powder metallurgy using technogenic waste.

      Methods. Powder for wear-resistant material was obtained from metal-abrasive sludge waste. The grinding sludge of 40X10С2М steel was used, which contains 65 – 70% of metal, 10 – 15% of non-metallic component and 20% of lubricating-cooling fluid by a special preparation: grinding, washing, dehydration, drying, magnetic separation, recovery annealing in a generator gas. The wear resistance of tribotechnical pairs of powder composite materials was assessed according to DSTU 2823-94. The wear resistance of the restored tribotechnical pairs has been determined by means of stand experimental research on the SMC-3 testing machine in the conditions of limited lubricants feeding. The reasons for improving the wear resistance have been revealed by means of metallographic studies, as well as the composition with higher properties has been set through the research of powder compactability.

      Findings. The compositions of powder, composite materials for the restoration of tribotechnical pairs using technogenic wastes and the technology of their application to the surfaces of parts have been developed. A wear-resistant powder layer for the restoration of the “shaft”-type parts has been obtained, working in pair with a composite recovery layer of the “hub”-type part. The physical and mechanical characteristics of a recovery layer of worn-out surfaces of “shaft – hub”-type parts have been studied. The influence of the percentage anti-seize additive content on the wear resistance of the obtained materials under conditions of contamination with coal dust has been determined. The scheme for restoring worn-out surfaces of “shaft – hub”-type tribotechnical pairs has been proposed. The research results enable to extend the life of worn-out parts, which will result in savings to replace with new parts.

      Originality. It has been found that the introduction of 15% copper into a composite recovery layer of a “hub”-type part leads to the formation on the surface of a partition of solid and strong non-metallic layer, which leads to increased wear resistance of the tribotechnical pair.

      Practical implications. The proposed scheme for the restoration of worn-out surfaces by the method of hot radial stamping of powdered materials enables the utilization of technogenic waste and helps to extend the service life of worn-out parts, which leads to savings in their replacement.

      Keywords: tribotechnical pair, wear resistance, powder, bimetal, restoration, coal industry


      REFERENCES

Aliieva, L. (2015). Арplication of fracture criteria in technological problems of metal forming. In XVI International Scientific Conference “New Technologies and Achievements in Metallurgy, Material Engineering and Production Engineering” (pp. 94-99). Częstochowa, Poland: Czestochowa University of Technology.

Aliieva, L. (2016). Cold extrusion shaping of parts with flange. In XVII International Scientific Conference “New Technologies and Achievements in Metallurgy, Material Engineering and Production Engineering” (pp. 183-188). Częstochowa, Poland: Czestochowa University of Technology.

Biloshytskyi, M., Tatarchenko, H., & Biloshytska, N. (2018). Sposib oderzhannia poroshku midi z providnykiv strumu maloho diametra ta struzhky. Patent No. 121714, Ukraina.

Biloshytskyi, M., Tatarchenko, H., & Biloshytska, N. (2019). Hazohenerator. Kyiv, Ukraina: Nadra.

Biloshytskyi, M., Tatarchenko, H., Biloshytska, N., & Uvarov, P. (2017). Tekhnolohiia otrymannia poroshku midi z vidkhodiv promyslovosti. Naukovi Notatky, (59), 27-31.

Dolganov, A., & Timukhin, S. (2016). Gidroabrazivnyy iznos rudnichnogo vodootliva. Moskva, Rossiya: Izdatel’skiy dom Akademii Estestvoznaniya.

Dudnikov, A., Belovod, A., Kanivets, A., & Dudnik, V. (2011). Povyshenie dolgovechnosti detaley pri ikh vosstanovlenii. Nauchno-innovatsionnaya deyatel’nost’ v agropromyshlennom komplekse, 142-144.

Kostornov, A. (2002). Materialovedenie dispersnykh i poristykh metallov i splavov. Kiev, Ukraina: Naukova dumka.

Luzan, S. (2014). Klasyfikatsiia typovykh modulnykh spoluchen detalei zasobiv transport. Visnyk KhNTUSH im. P. Vasylenka, (151), 101-107.

Maslyuk, V., & Napara-Volgina, S. (2003). Sloistye poroshkovye iznoso- i korrozionnostoykie materialy instrumental’nogo i tribotekhnicheskogo naznacheniya. Poroshkovaya Metallurgiya, (3/4), 17-25.

Naumenko, A. (2004). Povyshenie dolgovechnosti detaley mashin naneseniem pokrytiy vodorodno-kislorodnym plamenem. Ph.D Thesis. Khar’kov, Ukraina: Khar’kovskiy gosudarstvennyy tekhnicheskiy universitet sel’skogo khozyaystva.

Naumenko, A. (2004). Povyshenie dolgovechnosti detaley mashin naneseniem pokrytiy vodorodno-kislorodnym plamenem. Ph.D Thesis. Khar’kov, Ukraina: Khar’kovskiy gosudarstvennyy tekhnicheskiy universitet sel’skogo khozyaystva.

Pavlygo, T., Serdyuk, G., & Svistun, L. (2005). Primenenie tekhnologii goryachey shtampovki dlya polucheniya poroshkovykh iznosostoykikh konstruktsionnykh materialov s dispersnymi tverdymi vklyucheniyami. Poroshkovaya Metallurgiya, (7/8), 43-50.

Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14-17.

Radomysel’skiy, I., Serdyuk, G., & Shcherban’, N. (1985). Konstruktsionnye poroshkovye materialy. Kiev, Ukraina: Tekhnika.

Rud’, V., Gal’chuk, T., & Povstyanoy, O. (2005). Ispol’zovanie otkhodov podshipnikovogo proizvodstva v poroshkovoy metallurgii. Poroshkovaya Metallurgiya, (1/2), 106-112.

Ryabicheva, L., & Tsyrkin, A. (2004). Tekhnologiya izgotovleniya materialov iz otkhodov proizvodstva. Lugansk, Ukraina: Izdatelstvo VNU im. V. Dalya.

Ryabicheva, L., Sklyar, A., & Beloshitskiy, N. (2005). Eksperimental’noe issledovanie podgotovki i pressovaniya metalloabrazivnogo shlama stali 40X10С2М. Resursozberіhaiuchі Tekhnolohii Vyrobnytstva ta Obrobky Tyskom Materіalіv u Mashynobuduvannі, 136-140.

Ryabicheva, L., Tsyrkin, A., & Beloshitskiy, N. (2007) Poroshkovaya stal’ poluchennaya pererabotkoy shlifoval’nogo shlama. Teoretychnі і Eksperymental’nі Doslіdzhennia v Tekhnolohіiakh Suchasnoho Materіaloznavstva ta Mashynobuduvannia, 33-38.

Skvortsov, V., & Okhotin, I. (2007). Tochnost’ pri dornovanii s bol’shimi natyagami otverstiy malogo diametra v tolstostennykh vtulkakh. Obrabotka Metallov, (4), 15-17.

Vagonova, O.G., & Volosheniuk, V.V. (2012). Mining enterprises’ economic strategies as derivatives of nature management in the system of social relations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 127-134.

Varmazyar, A., Allahkaram, S.R., & Mahdavi, S. (2018). Deposition, characterization and evaluation of monolayer and multilayer Ni, Ni – P and Ni – P – Nano ZnOp coatings. Transactions of the Indian Institute of Metals, 71(6), 1301-1309.
https://doi.org/10.1007/s12666-018-1279-y

Voynash, S.A., Gaydukova, P.A., & Markov, A.N. (2017). Rational route choosing methodology for machine parts restoration and repair. Procedia Engineering, (206), 1747-1752.
https://doi.org/10.1016/j.proeng.2017.10.708

Zhang, H., Zhang, X., Liu, Z., & Miao, Q. (2017). Understanding theories and methods on equipment operational reliability assessment. 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 367-370.
https://doi.org/10.1109/sdpc.2017.76

Лицензия Creative Commons