Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Application features of the surface laser scanning technology when solving the main tasks of surveying support for reclamation

K. Rysbekov1, D. Huayang2, T. Kalybekov1, M. Sandybekov1, K. Idrissov3, Y. Zhakypbek1, G. Bakhmagambetova1

1Satbayev University, Almaty, Kazakhstan

2China University of Mining and Technology, Beijing, China

3LLP “Leica Geosystems Kazakhstan”, Astana, Kazakhstan


Min. miner. depos. 2019, 13(3):40-48


https://doi.org/10.33271/mining13.03.040

Full text (PDF)


      ABSTRACT

      Purpose. Study of the effectiveness of topographical survey methods when solving the main tasks of surveying support for the disturbed lands reclamation.

      Methods. Comparative analysis of the topographical survey results, which was conducted with the use of electronic total station and a surface laser scanner during reclamation. The heap leaching dump at the Belaya Gorka Site of the Rodnikovoye Field has been chosen as an object for topographical survey. To compare adequately, the electronic total station and the laser scanner were chosen of the same accuracy class. The determination of the values accuracy of the area and volume of an object during a tacheometric survey depends on the discreteness of surveying pickets. In practice, the density of the pickets’ arrangement is limited by the working capacity of the surveying crew, which, as a rule, is several hundred pickets per day, and the density is two or three survey points per 100 m2 of the object. To determine the dependence of measurement accuracy on the pickets’ density during the tacheometric survey, it was carried out at four different scales, with the distance between the pickets from 5 to 25 meters. The density of points (pickets) of a surface laser scanner, which was used in the studies, is 500 points per 100 m2 of survey area.

      Findings. Based on the results of the tacheometric survey and surface laser scanning of the heap leaching dump, two variants of the topographic maps of the surface and its smoothed digital model have been obtained. Detailed surface laser scanning at an increased level in comparison with a tacheometric survey improves the topographic map accuracy. Improved accuracy when determining the volume on a survey scale of 1:500 – 1:2000 is 12%.

      Originality.A new concept for topographical surveying is proposed when solving the surveying problems of reclaiming the disturbed lands, based on the methods of surface laser scanning.

      Practical implications. Use of the surface laser scanning technology makes possible to obtain the prompt three-dimensional visualization of the surveyed area, to ensure high accuracy and degree of detailed survey, to increase the working capacity and field surveying conditions, to solve the main tasks of surveying support of the disturbed lands reclamation in the shortest possible time and with the required surveying quality.

      Keywords: reclamation, relief, dump, laser scanner, surveying, electronic total station


      REFERENCES

Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (2), 3-10.
https://doi.org/10.5593/sgem2016/b22/s09.001

Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016.
https://doi.org/10.1051/e3sconf/20186000016

Bagratuni, G.V., Ganypin, V.N., & Danilevich, B.B. (1984). Inzhenernaya geodeziya. Moskva, Rossiya: Nedra.

Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32.
https://doi.org/10.1201/b19901-6

Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17.

Chrzanowski, A. (1993). Modern Surveying Techniques for Mining and Civil Engineering. Rock Testing and Site Characterization, 773-809.
https://doi.org/10.1016/b978-0-08-042066-0.50039-2

Chui, Y.V., Moshynskyi, V.S., Martyniuk, P.M., & Stepanchenko, O.M. (2018). On conjugation conditions in the filtration problems upon existence of semipermeable inclusions.JP Journal of Heat and Mass Transfer, 15(3), 609-619.
https://doi.org/10.17654/hm015030609

Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sub-layers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 17(13), 599-606.
https://doi.org/10.5593/sgem2017/13/s03.076

Gorova, A., Pavlychenko, A., Borysovs’ka, O., & Krups’ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Collection – Mining of Mineral Deposit 2013, 207-209.
https://doi.org/10.1201/b16354-38

Gusev, V.N., Naumenko, A.I., Volokhov, E.M., & Golovanov, V.A. (2008). Osnovy nazemnoy lazerno-skaniruyushchey s’emki. Sankt-Peterburg, Rossiya: Sankt-Peterburgskiy Gosudarstvennyy Gornyy Institut.

Gusev, V.N. (2009). Metodicheskie podkhody k s’emke kar’yerov lazerno-skaniruyushchimi sistemami. Marksheyderskiy Vestnik, (4), 19-24.

Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287-291.
https://doi.org/10.1201/b19901-51

Kalybekov, T., Rysbekov, K.B., & Sandibekov, M.N. (2018). Studying of the condition of the mined lands on open-cast minings and their recultivation. In Scientific and Technical Internet Conference “Innovative Development of Resource-Saving Technologies of Mineral Mining and Processing” (pp. 79-81). Petroșani, Romania: Universitas Publishing.

Kalybekov, T., Sandibekov, M.N., Rysbekov, K.B. (2018). Management of land reclamation on opencast mining. Resources and resource-saving technologies in mineral mining and processing. Multi-authored monograph (pp. 37-53). Petroșani, Romania: Universitas Publishing.

Kovrov, A.A. (2007). Tekhnologiya opredeleniya ob’emov gornykh porod v kar’yerakh i na skladakh metodom nazemnogo lazernogo skanirovaniya. Zhurnal “Geoprofi”, (2), 10-12.

Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern techno-logies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31.

Kuzlo, M.T., Moshynskyi, V.S., & Martyniuk, P.M. (2018). Mathematical modelling of soil massif’s deformations under its drainage. International Journal of Applied Mathematics, 31(6), 751-762.
https://doi.org/10.12732/ijam.v31i6.5

Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, (60), 00005.
https://doi.org/10.1051/e3sconf/20186000005

Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-Mechanical and Chemical Characteristics of Amber. Solid State Phenomena, (277), 80-89.
https://doi.org/10.4028/www.scientific.net/ssp.277.80

Medvedev, E.M., & Mel’nikov, S.R. (2002). Preimushchestva primeneniya lazernykh skaniruyushchikh sistem nazemnogo i aviatsionnogo bazirovaniya. Gornaya Promyshlennost’, (5), 3-5.

Mel’nikov, S.R. (2001). Lazernoe skanirovanie. Novyy metod sozdaniya trekhmernykh modeley mestnosti i inzhenernykh ob’ektov. Gornaya Promyshlennost’, (5), 3-5.

Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409.
https://doi.org/10.1016/s0020-7462(96)00047-9

Nesterenko, E.A., Volokhov, E.M., & Gusev, V.N. (2009). Optimizatsiya lazerno-skaniruyushchey s’emki. Marksheyderskiy Vestnik, (6), 38-43.

Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138.

Popov, V.N., Vorkovastov, K.S., & Stolchnev, V.G. (1989). Marksheyderskie raboty na kar’yerakh i priiskakh. Moskva, Rossiya: Nedra.

Popov, I., & Kalybekov, T. (2000). Marksheyderskoe delo. Marksheyderskie raboty pri gornotekhnicheskoy rekul’tivatsii narushennykh zemel’. Almaty, Kazakhstan: Pechatnyy dom.

Popov, V.N., Bukrinskiy, V.A., Bruevich, P.N., & Borovskiy, D.I. (2010). Geodeziya i marksheyderiya. Moskva, Rossiya: Moskovskiy Gosudarstvennyy Gornyy Universitet.

Rysbekov, K.B., & Amirov, Zh.I. (2011). Sovremennye geo-dezicheskie tekhnologii dlya bystroy i effektivnoy s’emki. Dostizheniya Vysshey Shkoly, 83-86.

Sapina, M. (2016). A Comparison of Artificial Neural Networks and Ordinary Kriging depth maps of the Lower and Upper Pannonian stage border in the Bjelovar Subdepression, Northern Croatia. Rudarsko Geolosko Naftni Zbornik, 31(3), 75-86.
https://doi.org/10.17794/rgn.2016.3.6

Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Mode-lling Simulation, 43(10), 1409-1414.
https://doi.org/10.1080/02329290290024925

Seredovich, V.A., Komissarov, A.V., & Shirokova, T.A. (2009). Nazemnoe lazernoe skanirovanie. Novosibirsk, Rossiya: SGGA.

Triger, A.L. (2009). Opyt ispol’zovaniya skaniruyushchikh takheometrov dlya odnovremennogo orientirovaniya mnozhestva ob’ektov. Gornyy Informatsionno-Analitiches-kiy Byulleten’, (4), 228-233.

Vagonova, O.G., & Volosheniuk, V.V. (2012). Mining enterprises’ economic strategies as derivatives of nature ma-nagement in the system of social relations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 127-134.

Vasil’yev, I.V., Zarovnyaev, B.N., & Shubin, G.V. (2013). Ispol’zovanie lazernogo skanirovaniya dlya issledovaniya geomekhanicheskogo sostoyaniya bortov kar’yerov. Zhurnal Geoprofi, (2), 50-52.

Vasil’yev, I.V., Zarovnyaev, B.N., & Shubin, G.V. (2015). Monitoring kar’yerov metodom lazernogo skanirovaniya v usloviyakh Kraynego Severa. Ural’skaya Gornaya Shkola, 230-232.

Voroshilov, A.P., & Karachentsev, Yu.A. (2009). Vybor mestopolozheniya stantsiy pri nazemnom lazernom skanirovanii zdaniy i sooruzheniy. Vestnik YuUrGU, (16), 20-22.

Yinli, B., Haiyang, Y., & Zhakypbek, Y. (2016). Morphological characteristics of mycorrhizal plant based on 3D laser scanning technology. Journal of China Coal Society, 41(8), 2071-2078.

Zarovnyaev, B.N., Shubin, G.V., Vasiliev, I.V., & Varlamova, L.D. (2016). Pitwall monitoring in deep surface mines using surface laser scanning. Gornyi Zhurnal, (9), 37-40.
https://doi.org/10.17580/gzh.2016.09.07

Zheltko, Ch.N., Gura, D.A., Pastukhov, M.A., & Shevchenko, G.G. (2015). Issledovaniya vliyaniya vnetsentrennosti alidady elektronnykh takheometrov. Izvestiya Vysshikh Uchebnykh Zavedeniy. Geodeziya i Aerofotos’emka, (6), 18-23.

Zheltko, Ch.N., Gura, D.A., Shevchenko, G.G., & Berdzenishvili, S.G. (2014). Eksperimental’nye issledovaniya pogreshnostey izmereniy gorizontal’nykh uglov electron-nymi takheometrami. Metrologiya, (2), 17-20.

Лицензия Creative Commons