Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Improving rock classification in terms of explosivity

S. Vokhmin1, Yu. Trebush1, G. Kurchin1, A. Kirsanov1, E. Zaitseva1, M. Lobatsevich2

1Siberian Federal University, Krasnoyarsk, Russian Federation

2Joint Stock Company “Polyus Krasnoyarsk”, Krasnoyarsk, Russian Federation

Min. miner. depos. 2019, 13(3):12-21

Full text (PDF)


      Purpose. To improve rock classification in terms of explosivity relying upon the detailed analysis of characteristics of rating classifications available in the Russian Federation and in the world.

      Methods. Complex approach has been applied involving comparison of sizes of particle-size fractions determined in terms of both national and the world standards; information gathering and processing as for the available classifications intended to identify difficulties of rock explosivity; compilation of comparative systematic of classifications or methods being considered.

      Findings. Both national and the world rock classifications in terms of explosivity have been considered. While comparing national classifications as for the difficulties of rock mass failure (i.e. explosivity), a comparative table has been compiled where the most popular rock classifications are compared. Analysis of the world practices, concerning compilation of rock classifications in terms of explosivity, has shown that their approaches differ from Russian ones slightly. In the first instance, they are empiric dependences being calculated for each rock mass type separately in any single case. It has been determined that geomechanical classification of D. Lobshir (MRMR) is the most popular and rating world system to evaluate rock explosivity. It has been demonstrated that while compiling such classifications, foreign scientific writers put an emphasis on physical and mechanical indices of rocks (i.e. density, fissility, compression strength, tensile strength etc.) as well as on mine engineering ones (i.e. line of the least resistance, well diameter and depth, stope height etc.) which determines essential reliability of calculation of drilling-and-blasting parameters.

      Originality.The research is the first stage of the development of the unified transition classification from Russian explosivity scales to the comparable world methodic practices as for rock mass explosivity.

      Practical implications. To perform rapid transition from one explosivity classification to the other. The findings are recommended to be used while projecting drilling and blasting operations in the context of any types of minerals and in the context of academic activity.

      Keywords: rock explosivity, classification, rating, explosion, granulometric size composition, explosives


Aarsen, J., Milne, G., & Erickson, M. (2012). Open pit – drilling and blasting, 1-38.

Afum, B.O., & Temeng, V.A. (2015). Reducing drill and blast cost through blast optimisation – a case study. Ghana Mining Journal, 15(2), 50-57.

Ak, H., & Konuk, A. (2008). The effect of discontinuity frequency on ground vibrations produced from bench blasting: a case study. Soil Dynamics and Earthquake Engineering, 28(9), 686-694.

ASTM D 2487-2000. (2000). Standard test method for classification of soils for engineering purposes. Geneva, Switzerland: International Organization for Standardization.

Avdeev, F.A., Baron, V.L., Gurov, N.V., & Kantor, V.Kh. (1986). Normativnyy spravochnik po burovzryvnym rabotam. Moskva, Rossiya: Nedra.

Bakhtavar, E, Khoshrou, H., & Badroddin, M. (2015). Using dimensional-regression analysis to predict the mean particle size of fragmentation by blasting at the Sungun copper mine. Arabian Journal of Geosciences, 8(4), 2111-2120.

Bieniawski, Z.T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. New York, United States: Wiley.

Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 115-119.

Borquez, G.V. (1981). Estimation of drilling and blasting cost – an analysis and prediction model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(5), 104.

Chernai, A.V., Sobolev, V.V., Chernai, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper (II) perchlorate. Combustion, Explosion and Shock Waves, 39(3), 335-339.

Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17.

Choudhary, B.S. (2013). Firing patterns and its effect on muckpile shape parameters and fragmentation in quarry blasts. International Journal of Research in Engineering and Technology, 2(9) 32-45.

Cunningham, C.V.B. (1987). Fragmentation estimations and the Kuz-Ram model four years on. International Symposium on Rock Fragmentation by Blasting, 475-487.

ENiR Sbornik E2. (1986). Edinye normy i rastsenki na stroitel’nye, montazhnye i remontno-stroitel’nye raboty: Zemlyanye raboty. Vypusk 1. Mekhanizirovannye i ruchnye zemlyanye raboty. Moskva, Rossiya: Gosstroy.

Fraenkel, K.H. (1954). Handbook in rock blasting technique. Part-1. Stockholm, Sweden: Esselte AB.

GOST 25100-2011. (2013). Grunty. Klassifikatsiya. Moskva, Rossiya: Rosstandart.

Heinen, R.H., & Dimock, R.H. (1976). The use of sonic measurements to determine the blastability of rocks. Proceedings Second Conference on Explosive and Blasting Techniques, 234-248.

Hino, K. (1959). Theory and practice of blasting. Tokio, Japan: Nippon Kayaku Co. Ltd.

Hosseini, M., & Baghikhani, M.S. (2013). Analysing the ground vibration due to blasting at Alvand Qoly limestone mine. International Journal of Mining Engineering and Mineral Processing, 2(2), 17-23.

Hustrulid, W. (1999). Blasting principles for open pit mines. General design concepts. Colorado, United States: Brookfield.

ISO 14688-2:2004. (2004). Geotechnical investigation and testing – identification and classification of soil – Part 2: Classification principles and quantification of descriptive characteristics. Geneva, Switzerland: International Organization for Standardization.

Kanchibotla, S.S., Vizcarra, T.G., Musunuri, S.A.R., Tello, S., Hayes, A., & Moylan, T. (2015). Mine to mill optimisation at paddington gold operations. Materials of the International Conference on Semi-Autogenous and High Pressure Grinding Technology, 1-13.

Kaushik, D., & Phalguni, S. (2003). Concept of blastability – an update. Indian Mining Engineering Journal, 42(8-9), 24-31.

Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposit, 231-235.

Kitaly, V.D. (2013). Blast design optimization to improve material fragmentation. Complete Report. Dodoma, Tanzania: School of Mines and Petroleum Engeeniring, The University of Dodoma.

Kulatilake, P.H.S.W., Qiong, W., Hudaverdi, T., & Kuzu, C. (2010). Mean particle size prediction in rock blast fragmentation using neural networks. Engineering Geology, 114(3-4), 298-311.

Kuznetsov, V.A. (2010). Obosnovanie tekhnologii burovzryvnyh rabot v karerah i otkrytyh gorno-stroitelnyh vyrabotkah na osnove deformacionnogo zonirovaniya vzryvaemyh ustupov. PhD Thesis. Moscow, Russian Federation.

Laubscher, D.H. (1990). A geomechanics classification system for the rating of rock mass in mine design. Journal of the Southern African Institute of Mining and Metallurgy, 90(10), 257-273.

Laubscher, D.H., & Jacubec, J. (2000). The MRMR rock mass classification for jointed rock masses. Foundations for Design, 475-481.

Lowrie, R. (2002). Mining reference handbook. Englewood, Colorado, United States: Society for Mining, Metallurgy, and Exploration.

Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409.

Nobel, D. (2010). Blasting and explosives quick reference guide. Kalgoorlie, Australia: Dyno Nobel Asia Pacific Pty Ltd.

Onika, S.G., Stasevich, V.I., & Kovalѐva, I.M. (2016). Razrushenie gornykh porod vzryvom: elektronnyy uchebno-metodicheskiy kompleks dlya spetsial’nostey 1-51 02 01. Minsk, Belarus’: BNTU.

Rajmeny, P., Shrimali, R., Shekhawat, L., & Joshi, A. (2012). Improving pit wall stability by minimizing blast damage vis a vis rock characterization at RAM. Blasting in Mining – New Trends, 21-27.

Roberts, A. (2013). Applied geotechnology: a text for students and engineers on rock excavation and related topics. New York, United States: Elsevier.

Rock breakage and blast design considerations in open pit. (2012). Retrieved from

Rout, M., & Parida, C.K. (2007). Optimization of blasting parameters in opencast mines. Rourkela, India: Department of Mining Engineering, National Institute of Technology.

Rozhdestvenskiy, V.N. (2012). Prognozirovanie kachestva drobleniya treshchinovatyh gornyh massivov pri mnogoryadnom vzryvanii zaryadov. Tekhnologiya i Bezopasnost Vzryvnyh Rabot, 38-43.

Sassa, K., & Ito, I. (1974). On the relation between the strength of a rock and the pattern of breakage by blasting. Procee-dings of 3rd International Congrees Rock Mechanics Denver, (II-B), 1501-1505.

Shapurin, A.V., & Vasilchuk, Ya.V. (2012). Matematicheskaya model’ dlya prognozirovaniya granulometricheskogo sostava vzorvannyh gornyh porod. Vіsnik KrNU іmenі Mihaila Ostrogradskogo, 4(75), 94-99.

Shevyrev, L.T., & Savko, A.D. (2012). Rudnye mestorozhdeniya Rossii i mira. Spravochnik i uchebnoe posobie. Trudy NII Geologii VGU, (70), 1-284.

Singh, P.K., Roy, M.P., Paswan, R.K., Sarim, M.D., Kumar, S., & Jha, R.R. (2016). Rock fragmentation control in opencast blasting. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 225-237.

SNiP IV-2-82. (1984). Stroitel’nye normy i pravila: Sbornik 1. Zemlyanye raboty. Moskva, Rossiya: Rosstandart.

Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), (134), 977-982.

Tangaev, I.A. (1978). Burimost’ i vzryvaemost’ gornykh porod. Moskva, Rossiya: Nedra.

Thornton, D.M., Sprott, D., & Brunton, I.D. (2005). Measuring blast movement to reduce loss and dilution, 1-11.

Trubetskoy, K.N., Artem’yev, V.B., & Ruban, A.D. (2014). Otkrytye gornye raboty. Moskva, Rossiya: Izdatel’stvo “Gornoe delo”.

Vokhmin, S.A., Kurchin, G.S., Kirsanov, A.K., Shigin, A.O., & Shigina, A.A. (2017). Destruction of rock upon blasting of explosive agent. ARPN Journal of Engineering and Applied Sciences, 12(13), 3978-3986.

Vokhmin, S.A., Kurchin, G.S., Kirsanov, A.K., Lobatsevich, M.A., Shigin, A.O., & Shigina, A.A. (2018). Prospects of the use of grain-size composition predicting models after explosion in open-pit mining. International Journal of Mechanical Engineering and Technology, 9(4), 1056-1069.

Vremennaya klassifikatsiya gornykh porod po stepeni treshchinovatosti v massive. (1968). Moskva, Rossiya: IGD.

Wesley, L.B. (1999). Back to basics. The fundamentals of Blast Design, 1-31.

Лицензия Creative Commons