Predicting remaining lifetime of drill pipes basing upon the fatigue crack kinetics within a pre-critical period
V. Tyrlych1, V. Moisyshyn1
1Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
Min. miner. depos. 2019, 13(3):127-133
https://doi.org/10.33271/mining13.03.127
Full text (PDF)
      ABSTRACT
      Purpose is to determine regularities of the development of corrosive fatigue cracks in terms of high-strength drill pipes.
      Methods. Basing upon the approaches of the material failure mechanics, the crack has been characterized by the area that is the integral characteristic. Having applied the equivalent area methods, semicircle fatigue crack has been considered instead of the plane fatigue crack of the arbitrary shape; the semicircle fatigue crack is equivalent to the plane fatigue crack of the arbitrary shape in terms of the area. Kinetics of its growth has been analyzed basing on the solution of the first order differential equation which determines dependence of the equivalent semicircle radius upon the number of loading cycles in terms of the specified initial condition. Critical radius dimension has been defined provided that the condition of transition to unstable failure is met within at least one contour point.
      Findings. Remaining lifetime of drill pipe TBPV 127×9.19 S-135 with the detected cross crack of the fixed area has been evaluated; in terms of the specified operating modes, the lifetime was 653000 cycles, i.e. 181 hours. According to the production data, that pipe operated 3215 hours in the well including 200 hours after the last defectoscopy; that correlates with the obtained results.
      Originality. The proposed mathematical model of the fatigue crack development makes it possible to calculate the remaining lifetime of drill pipes approximately but sufficiently enough for practical needs.
      Practical implications. The obtained regularities may be used to sort out the defected pipes as well as to substantiate periodical non-destruction control in the process of drilling and tripping operations. Studies of the fatigue crack growth may be the basis to develop measures aimed at reducing stresses effecting the drill string and minimizing washout formations; that will help prolong the drill pipe life.
      Keywords: drill pipe, crack, stress intensity coefficient, kinetics, loading cycle, remaining lifetime
      REFERENCES
Andreykiv, A.Ye., & Darchuk, A.I. (1992). Ustalostnoye razrusheniye i dolgovechnost’ konstruktsiy. Kyiv: Naukova dumka.
Artym, V.I., Yatsynyak, I.I., Hrytsiv, V.V., Yurych, A.R., & Rachkevych, R.V. (2012) Analiz koroziyno-vtomnykh ruynuvan’ elementiv buryl’noyi kolony. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch, 2(43), 197-200.
Dzheyson, K., Reynol’ds, N., Ellis, S.H., & Styuart, D. (2004). Dostizheniya v proyektirovanii buril’noy kolonny s uche-tom ustalostnogo iznosa: teoriya koeffitsiyenta krivizny i illyustrativnyy primer. Neftegazovyye Tekhnologii, (3), 16-18.
Fangpo, L., Yonggang, L., Xinhu, W., & Caihong, L. (2011). Failure analysis of ∅127mm IEU G105 drill pipe wash out. Engineering Failure Analysis, 18(7), 1867-1872.
https://doi.org/10.1016/j.engfailanal.2011.06.018
Hnyp, I.P., Babyuk, I.S., & Chernov, B.O. (1990). Optymizatsiia dovhovichnosti zamkovykh rizbovykh ziednan burylnoi kolony na osnovi kryteriyiv mekhaniky ruynuvannya. Fiziko-Khimicheskaya Mekhanika Materialov, (6), 105-109.
Ivasiv, V.M., Artym, V.I., Hrytsiv, V.V., & Rachkevych, R.V. (2010). Udoskonalennya metodyky otsinky dovhovichnosti buryl’nykh trub z urakhuvannyam ekspluatatsiynykh navantazhen’. Naukovyy Visnyk IFNTUNH, 2(24), 41-45.
Kryzhanivs’kyi, E.I., Tsyrul’nyk, O.T., & Petryna, D.Y. (1999). Effect of hydrogenation and plastic predeformation of steel on its crack resistance. Materials Science, 35(5), 674-677.
https://doi.org/10.1007/bf02359354
Kryzhanivs’kyy, Ye.I., & Kopey, B.V. (2010). Prohnozuvannya resursu buryl’noyi kolony za parametramy koroziynoyi vtomy ta shvydkistyu poshyrennya vtomnykh trishchyn. Fizyko-Khimichna Mekhanika Materialiv, 409-426.
Kryzhanivs’kyy, Ye.I., Shats’kyy, I.P., & Petryna, D.Yu. (1997). Otsinka dovhovichnosti burylnykh trub z pozytsiy – modeli. Rozvidka i Rozrobka Naftovykh i Hazovykh Rodovyshch, (34), 3-8.
Kryzhanovskii, E.I. (1978). Effect of the drilling solution on the endurance of locking joints. Soviet Materials Science, 13(3), 320-321.
https://doi.org/10.1007/bf00716130
Kryzhanovskii, E.I. (1991). Effect of cycle asymmetry on the corrosion fatigue resistance of joints in drilling pipes. Soviet Materials Science, 26(4), 456-459.
https://doi.org/10.1007/bf00727063
MacDonald, K.A. (1994). Failure analysis of drillstring and bottom hole assembly components. Engineering Failure Analysis, 1(2), 91-117.
https://doi.org/10.1016/1350-6307(94)90010-8
Macdonald, K.A., & Bjune, J.V. (2007). Failure analysis of drillstrings. Engineering Failure Analysis, 14(8), 1641-1666.
https://doi.org/10.1016/j.engfailanal.2006.11.073
Migal’, I.G., Kopey, B.V., Karpash, O.M., & Kirindas, A.V. (1980). Rasprostraneniye korrozionno-ustalostnykh treshchin v buril’nykh trubakh TBVK. RNTS VNIIOENG, Seriya Mashiny i Neftyanoye Oborudovaniye, (9), 10-13.
Panasyuk, V.V. (1988). Mekhanika razrusheniya i prochnost’ materialov. Kyiv: Naukova dumka.
Pokhmurskii, V.I., Kryzhanovskii, E.I., Ivasiv, V.M., Poddubnyi, E.V., & Yanyshivskii, M.Y. (1984). A method of calculating the life of drill pipe joints on the basis of corrosion fatigue tests. Soviet Materials Science, 20(2), 193-195.
https://doi.org/10.1007/bf00721353
Ustalostnoye razrusheniye buril’nikh trub, yego prognozirovaniye i profilaktika. (2018). ROGTEC, (52), 62-79.
Vaisberg, O., Vincke, O., Perrin, G., Sarda, J.P., & Fay, J.B. (2002). Fatigue of drillstring: State of the art. Oil & Gas Science and Technology, 57(1), 7-37.
https://doi.org/10.2516/ogst:2002002
Zamani, S.M., Hassanzadeh-Tabrizi, S.A., & Sharifi, H. (2016). Failure analysis of drill pipe: A review. Engineering Failure Analysis, (59), 605-623.
https://doi.org/10.1016/j.engfailanal.2015.10.012