Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Optimization of position of the cyclical-and-continuous method complexes when cleaning-up the deep iron ore quarries

S. Kuzmenko1, Ye. Kaluzhnyi1, S. Moldabayev2, O. Shustov3, A. Adamchuk3, A. Toktarov2

1Joint Stock Company “Sokolov-Sarbais Mining-Processing Unity”, Rudny, Kazakhstan

2Satbaev University, Almaty, Kazakhstan

3Dnipro University of Technology, Dnipro, Ukraine


Min. miner. depos. 2019, 13(3):104-112


https://doi.org/10.33271/mining13.03.104

Full text (PDF)


      ABSTRACT

      Purpose. An algorithm development for calculating the optimum depth for cyclical-and-continuous method schemes introduction when cleaning-up the deep iron ore quarries.

      Methods. When developing an algorithm for calculating the optimum depth for cyclical-and-continuous method schemes introduction under the conditions of the Kacharsky mine, abstraction and analytical techniques were used to distinguish the parameters that most significantly influence on the depth value of the cyclical-and-continuous method schemes introduction. The developed algorithm has been applied when constructing a mathematical model based on mining-engineering parameters for cleaning-up the Kacharsky Iron Ore Mine.

      Findings. An algorithm is presented for calculating the optimum depth to put into operation the railway transport and a conveyor hoister in the cyclical-and-continuous method schemes, taking into account the mining-engineering and economic parameters for cleaning-up the deep quarries in surface mining. It has been substantiated that the transition from a combined automobile-railway to a combined automobile-conveyor-railway mode of transport is economically viable and will expand the limits of the effective use of surface mining of iron ore deposits. It is recommended to restrict the depth of commissioning the railway transport to 149 m, and the conveyor hoister – to 344 m into the cyclical-and-continuous method schemes using automobile-conveyor and automobile-railway modes of transport.

      Originality. Based on the constructed mathematical model, the dependences have been obtained of the prime costs for transporting the total volume of rocks mined on the depth of the cyclical-and-continuous method schemes introduction under the conditions of the Kacharsky Iron Ore Mine.

      Practical implications. For the conditions of cleaning-up the Kacharsky Iron Ore Mine, the optimum parameters have been set for the mining-transport scheme of the cyclical-and-continuous method, which ensure the minimum prime costs of the rock mass transportation.

      Keywords: cyclical-and-continuous method, automobile transport, conveyor hoister, railway transport, mathematical model, calculation algorithm


      REFERENCES

Adamchuk, A.A., & Shustov, O.O. (2018). Systemnyi pidkhid do vyboru novykh zasobiv transportu dlia roboty na hlybo-kykh karierakh. Zbirnyk Naukovykh Prats NHU, (54), 8-18.

Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 2, 3-10.
https://doi.org/10.5593/sgem2016/b22/s09.001

Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016.
https://doi.org/10.1051/e3sconf/20186000016

Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17.

Chetverik, M.S., Peregudov, V.V., & Romanenko, A.V. (2012). Tsiklichno-potochnaya tekhnologiya na glubokikh kar’yerakh. Perspektivy razvitiya. Krivoy Rog, Ukraina: Dionis.

Chui, Y.V., Moshynskyi, V.S., Martyniuk, P.M., & Stepanchenko, O.M. (2018). On conjugation conditions in the filtration problems upon existence of semipermeable inclusions. JP Journal of Heat and Mass Transfer, 15(3), 609-619.
https://doi.org/10.17654/hm015030609

Drizhenko, A.Yu., Kozenko, G.V., & Rykus, A.A. (2009). Otkrytaya razrabotka zhelezorudnykh rud Ukrainy: so-stoyanie i puti sovershenstvovaniya. Dnepropetrovsk, Ukraina: NGU.

Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 17(13), 599-606.
https://doi.org/10.5593/sgem2017/13/s03.076

Golosinski, T.S., Kuruppu, M.D., & Zhao, S.N. (1999). Development of a steep angle conveyor for surface mining applications. Mining Science and Technology, 657-660.

Grujić, M., & Erdeljan, D. (2014). Advantages of high angle belt conveyors (Hac) in mining. Applied Mechanics and Materials, (683), 73-77.
https://doi.org/10.4028/www.scientific.net/amm.683.73

Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287-291.
https://doi.org/10.1201/b19901-51

Kuruppu, M.D. (2003). The steep angle conveying option for large open pit mines. Proceedings Paper of 5th Large Open Pit Conference, 65-69.

Kuruppu, M.D., & Golosinski, T.S. (2000). Steep angle conveying for material transportation in open cut mines. Mine Planning and Equipment Selection 2000, 731-734.
https://doi.org/10.1201/9780203747124-137

Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern technologies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31.

Kuzlo, M.T., Moshynskyi, V.S., Martyniuk, P.M. (2018). Mathematical modelling of soil massif's deformations under its drainage. International Journal of Applied Mathematics, 31(6), 751-762.
https://doi.org/10.12732/ijam.v31i6.5

McKelvey, P., Beale, G., Taylor, A., Mansell, S., Mira, B., Valdivia, C., & Hitchcock, W. (2002). Depressurization of the north wall at the Escondida Copper Mine, Chile. Geological Society, London, Special Publications, 198(1), 107-119.
https://doi.org/10.1144/gsl.sp.2002.198.01.08 Mevissen, E.A., Siminerio, A.C., & Santos, J.A.D. (1981) High angle conveyor study. Dravo Corporation for Bureau of Mines, U.S. Department of the Interior under Bureau of Mines Contract No. J0295002, (1-2).

Mitchell, J.J. (1984). High angle conveyors climb to the top. Coal Mining, 39-43.

Mitchell, J.J., & Albertson, D.W. (1985). High angle conveyor offers mine haulage savings. International Materials Handling Conference, 1-12.

Moldabaev, S.K. (2018). Tekhniko-ekonomicheskoe obosnovanie tselesoobraznosti perekhoda na transportirovanie gornoy massy kombinirovannym avtomobil’nokonveyerno-zheleznodorozhnym vidom transporta i vybor tipa avtosamosvalov na Kacharskom kar’yere AO “SSGPO”. Almaty, Kazakhstan: NAO “KazNITU im. K.I. Satpaeva”.

Rakishev, B.R., Mukhamedzhanov, E.B., Samenov, G.K., & Kuttybaev, A.E. (2012). Ustanovlenie granits primeneniya ekskavatorno-avtomobil’nykh kompleksov razlichnoy moshchnosti v glubokikh kar’yerakh. Gornyy Informatsionno-Analiticheskiy Byulletel’, (7), 90-98.

Santos, J.A.D., & Frizzell, E.M. (1983). Evolution of sandwich belt high-angle conveyors. CIM Bulletin, 576(855), 51-66.

Santos, J.A.D. (1984). Sandwich belt high angle conveyors-applications in open pit mining. Bulk Solids Handling, Trans Tech Publications D-3392 Clausthal West Germany, 4(1), 67-77.

Santos, J.A.D. (1986). Sandwich belt high angle conveyors – broad horizons. CoalTrans ‘86 Rai Congress Centre.

Santos, J.A.D., & Stanisic, Z. (1987). In-pit crushing and high angle conveying in Yugoslavian copper mine. International Journal of Surface Mining, Reclamation and Environment, 1(2), 97-104.
https://doi.org/10.1080/09208118708944108

Zubovich, P.T., & Seleznev, A.V. (2004). O tselesoobraznoy glubine vvoda konveyera pri kombinirovannom transporte. Gornyy Informatsionno-Analiticheskiy Byulleten’, (2), 182-185.

Лицензия Creative Commons