Resonance in rock mass as the key reason of geodynamic phenomena
А. Riazantsev1, M. Riazantsev1, O. Nosach1
1Industrial Institute of the Donetsk National Technical University, Pokrovsk, Ukraine
Min. miner. depos. 2019, 13(2):46-58
https://doi.org/10.33271/mining13.02.046
Full text (PDF)
      ABSTRACT
      Purpose is to develop deformation criterion or predecessors of geodynamic phenomena within rock mass relying upon the systemized experimental data concerning rock behaviour in a volumetric field of compressive stress.
      Methods. Experiments as for rock deformation and failure in a volumetric stress state were carried out with the help of a device of non-uniform volumetric compression. The device was designed by Donetsk Institute for Physics and Engineering (DonIPhE) of the NAS of Ukraine. Volumetric deformations and share deformations, elastic parameters, parameters of a type of deformation state and stress state of Lode Nadai, and Lode angles were determined separately for each load grade taking into consideration corresponding increase in deformations. Sudden arching and its characteristic features were observed in longwall 2 of inclined drift of l1 seam in Kapitalna mine.
      Findings. It has been demonstrated that rock are classic auxetics in which elastic factors change their values and signs. It has been determined that the characteristic deformations, in terms of which elastic characteristics change their values, are quantized and constant for each material. Four characteristic stages, inherent to all rocks despite their stress state type and comprehensive pressure value, have been singled out during deformation. It has been defined that jump of amplitude of linear and shear deformations, resulting from double vortex and wave resonance in terms of velocity, dimensions of structures and frequency (stage 3), is a failure predecessor. Increase in minimum relative deformations (i.e. oscillations of a working face of a seam) and in maximum relative deformations (i.e. oscillations of roof or walls of a mine working) up to several percent have been proposed as the failure criterion.
      Originality.It has been determined for the first time that in the context of volumetric stress state, deformation increase is of alternative nature; elastic characteristics of rocks are not constants of a material varying in terms of a value and a sign during mechanical loading and shear deformations are of rotational nature.
      Practical implications. Resonance increase in the amplitude of maximum, minimum, and shear deformation growth is a criterion of total failure and dynamic failure in particular which can be used in practice as a predecessor of a failure or its prognostic criterion.
      Keywords: geodynamic phenomena, elastic characteristics, deformation growth, resonance, failure
      REFERENCES
Adushkin, V.V., & Oparin, V.N. (2014). Yavleniya znakoperemennoy reaktsii gornykh porod na dinamicheskie vozdeystviya – k volnam mayatnikovogo tipa v napryazhennykh geosredakh. FTPRPI, (4), 10-38.
Basin, M.A. (2000). Volny. Kvanty. Sobytiya. Volnovaya teoriya vzaimodeystviya struktur i sistem. Sankt-Peterburg, Rossiya: Norma.
Basina, G.I., & Basin, M.A. (2006). Sinergetika. Osnovy metodologii. Sankt-Peterburg, Rossiya: Norma.
Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
Glikman, A.G. (2003). O novom printsipe seysmorazvedki. Geofizika XXI stoletiya: 2002 god. Sbornik Trudov Chetvertykh Geofizicheskikh Chteniy im. V.V. Fedynskogo, 345-352.
Glikman, A.G. (2005a). Effekt akusticheskogo rezonansnogo pogloshcheniya (ARP) kak osnova novoy paradigmy teorii polya uprugikh kolebaniy. Geofizika XXI stoletiya: 2003 – 2004 gody. Sbornik Trudov Pyatykh i Shestykh Geofizicheskikh Chteniy im. V.V. Fedynskogo, 293-299.
Glikman, A.G. (2005b). O strukture polya uprugikhkolebaniy pri seysmoizmereniyakh. Geofizika XXI stoletiya: 2005 god. Sbornik Trudov Sed’mykh Geofizicheskikh Chteniy im. V.V. Fedynskogo, 9-10.
Guzev, M.A., & Makarov, V.V. (2007). Deformirovanie i razrushenie sil’no szhatykh gornykh porod vokrug podzemnykh gornykh vyrabotok. Vladivostok, Rossiya: Dal’nauka.
Hakala, M., Kuula, H., & Hudson, J.A. (2007). Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gneiss, Finland. International Journal of Rock Mechanics and Mining Sciences, 44(1), 14-46.
https://doi.org/10.1016/j.ijrmms.2006.04.003
Jefferies, M.G., & Shuttle, D.A. (2005). Norsand: calibration and use. Computer Methods and Advances in Geomechanics. Prediction, Analysis and Design in Geomechanical Applications, (1), 345-352.
Johnson, P.A., Shankland, T.J., O’Connell, R.J., & Albright, J.N. (1987). Nonlinear generation of elastic waves in crystalline rock. Journal of Geophysical Research, 92(B5), 3597-3602.
https://doi.org/10.1029/jb092ib05p03597
Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47.
https://doi.org/10.1016/j.jsm.2018.03.004
Khan, T., & McGuire, S. (2001). Can we use dynarnie elastic nonlinearity measurements of rocks to map feservoir properties? Oil and Gas Journal, (10), 1-8.
Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54.
Kimizuka, H., Kaburaki, H., & Kogure, Y. (2000). Mechanism for negative poisson ratios over the α – β transition of cristobalite, SiO2: a molecular-dynamics study. Physical Review Letters, 84(24), 5548-5551.
https://doi.org/10.1103/physrevlett.84.5548
Kodama, J., Goto, T., Fujii, Y., & Hagan, P. (2013). The effects of water content, temperature and loading rate on strength and failure process of frozen rocks. International Journal of Rock Mechanics and Mining Sciences, (62), 1-13.
https://doi.org/10.1016/j.ijrmms.2013.03.006
Kuksenko, V.S., Guzev, M.A., Makarov, V.V., & Rasskazov, I.Yu. (2011). Kontseptsiya sil’nogo szhatiya gornykh porod i massivov. Vestnik Dal’nevostochnogo Gosudarstvennogo Tekhnicheskogo Universiteta, 3/4(8/9), 14-58.
Kumchenko, Ya.A. (2002a). Edinayarezonatornaya priroda silovogo vzaimodeystviya v mikro- i makromire: al’ternativnaya teorіya. Teorіia ta Metodyka Navchannia Matematyky, Fіzyky, Informatyky, (2), 101-102.
Kumchenko, Ya.A. (2002b). Al’ternativnaya rezonatornaya teoriya silovykh vzaimodeystviy v makromire: ustoychivost’ Vselennoy i ee energetika na primere Solnechnoy sistemy. Teorіia ta Metodyka Navchannia Matematyky, Fіzyky, Informatyky, (2), 103-108.
Kumchenko, Ya.A. (2009). Tekhnologiya i obosnovanie neobkhodimosti monitoringa kosmicheskoy pogody dlya prognozirovaniya lokal’nykh zemnykh katastrof. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 4(61), 95-103.
Kurlenya, M.V., Adushkin, V.V., & Oparin, V.N. (1992). Znakoperemennaya reaktsiya gornykh porod na dinamicheskoe vozdeystvie. DAN SSSR, 323(2), 263-265.
Kurlenya, M.V., Oparin, V.N., & Eremenko, A.A. (1993). Ob otnoshenii lineynykh razmerov blokov gornykh porod k velichinam raskrytiya treshchin v strukturnoy ierarkhii massiva. Fiziko-Tekhnicheskie Problemy Gornogo Proizvodstva, (3), 3-9.
Kuwahara, Y., Yamamoto, K., & Hirasawa, T. (1990). An experimental and theoretical study of inelastic deformation of brittle rocks under cyclic uniaxial loading. Tohoku Geophysical Journal. Seria 5: Geophysics, 33(1), 1-21.
Li, M., Mao, X., Yu, Y., Li, K., Ma, C., & Peng, Y. (2012). Stress and deformation analysis on deep surrounding rock at different time stages and its application. International Journal of Mining Science and Technology, 22(3), 301-306.
https://doi.org/10.1016/j.ijmst.2012.04.003
Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, (35), 77-88.
https://doi.org/10.4028/www.scientific.net /jera.35.77
Lubarda, V., & Meyers, M. (1999). On the negative poisson ratio in monocrystalline zinc. Scripta Materialia, 40(8), 975-977.
https://doi.org/10.1016/s1359-6462(99)00039-1
Makarov, P.V. (2004). Ob ierarkhicheskoy prirode deformatsii i razrusheniya tverdykh tel. Fizicheska Yamezomekhanika, 7(4), 25-34.
Menshov, O., & Sukhorada, A. (2017). Basic theory and methodology of soil geophysics: the first results of application. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 79(4), 35-39.
https://doi.org/10.17721/1728-2713.79.05
Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409.
https://doi.org/10.1016/s0020-7462(96)00047-9
Oparin, V.N., & Tanaylo, A.S. (2009). Predstavlenie razmerov estestvennykh otdel’nostey gornykh porod v kanonichesko yshkale. Klassifikatsiya. Fiziko-Tekhnicheskie Problemy Gornogo Proiz-vodstva, (6), 40-53.
Panin, V.E., & Grinyaev, Yu.V. (2003). Fizicheskaya mezomekhanika – novaya paradigma na stykefiziki i mekhaniki deformiruemogo tela. Fizicheskaya Mezomekhanika, 6(4), 9-36.
Panin, V.E., Panin, A.V., & Moiseenko, D.D. (2007). Priroda lokalizatsii plasticheskoy deformatsii tverdykh tel. Zhurnal Tekhnicheskoy Fiziki, 77(8), 62-69.
Paterson, M.S. (1978). Experimental rock deformation – the brittle field. New York, United States: Springer-Verlag.
https://doi.org/10.1007/978-3-662-11720-0
Pellet, F.L., & Fabre, G. (2007). Damage evaluation with p-wave velocity measurements during uniaxial compression tests on argillaceous rocks. International Journal of Geomechanics, 7(6), 431-436.
https://doi.org/10.1061/(asce)1532-3641(2007)7:6(431)
Pisetski, V.B., Kornilkov, S.V., Sashurin, A.D., Lapin, E.S., Lapin, S.E., & Balakin, V.Y. (2017). Concept, system solutions and the results of geotechnical monitoring and forecasting of hazardous geodynamic phenomena in the processes of underground mining. Engineering Geophysics, 129037.
https://doi.org/10.3997/2214-4609.201700422
Ryazantsev, A.N. (2012). Strukturno-fazovye perekhody v gornykh porodakh i sootvetstvie otnositel’nykh deformatsiy na mikro- i makrourovnyakh. Fiziko-Tekhnicheskie Problemy Gornogo Proizvodstva, (15), 42-54.
Ryazantsev, A.N., & Starikov, G.P. (2013). Rotatsionnye deformatsii v gornykh porodakh. Fiziko-Tekhnicheskie Problemy Gornogo Proizvodstva, (16), 119-125.
Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
Sobolev, G.A., & Ponomarev, A.V. (2003). Fizika zemletryaseniy i predvestniki. Moskva, Rossiya: Nauka.
Starostenko, V., Pashkevich, I., Makarenko, I., Kuprienko, P., & Savchenko, O. (2018). Lithosphere heterogeneity of the Dnieper-Donets basin and its geodynamical consequences. II part. Geodynamics interpretation. Geodynamics, 2(23), 83-103.
https://doi.org/doi:10.23939/jgd2017.02.083
Stumpf, H. (1995). Constitutive model and incremental shakedown analysis in finite elastoplasticity. Solid Mechanics and Its Applications, 293-307.
https://doi.org/10.1007/978-94-011-0271-1_16
Sukhov, V., Chuyenko, O., & Suyarko, V. (2017). On connection of modern geodynamic processes in carbonate rocks with tectonic activization of Petrivs’k-Kreminna fault. Visnyk of V.N. Karazin Kharkiv National University – Series Geology Geography Ecology, (46), 56-61.
https://doi.org/10.26565/2410-7360-2017-46-07
Takahashi, M., Lin, W., & Kwasniewski, M. (2005). Mechanical and hydraulic behaviors in Shirama sandstone under true triaxial compression stress. Proceedings of the International Society for Rock Mechanics and Rock Engineering, 1-7.
Vikulin, A.V. (2010). Novyy tip uprugikh rotatsionnykh voln v geosrede i vikhrevaya geodinamika. Geodinamika i Tektonofizika, 1(2), 119-141.
Vikulin, A.V., Bykov, V.G., & Luneva, M.N. (2000). Nelineynye volny deformatsii v rotatsionnoy modeli seysmicheskogo protsessa. Vychislitel’nye Tekhnologii, (5), 31-39.