Transportation of concentration and leaching tailings in underground mining of metal deposits
V. Golik1, M. Mitsik2, V. Morkun3, N. Morkun4, V. Tron3
1North Caucasian Mining and Metallurgical Institute, Vladikavkaz, Russian Federation
2Institute of Service and Entrepreneurship (Branch) of Don State Technical University, Shakhty, Russian Federation
3Kryvyi Rih National University, Kryvyi Rih, Ukraine
Min. miner. depos. 2019, 13(2):111-120
https://doi.org/10.33271/mining13.02.111
Full text (PDF)
      ABSTRACT
      Purpose. The article aims to substantiate efficient parameters of resource-saving technological processes ensuring optimal environmental and economic indices of concrete mixtures transportation under the force mode and changes of the transported mass parameters depending on transportation conditions.
      Methods. The complex method of investigation includes generalization and analysis of the theory and practice of mixtures transportation, theoretical and industrial research into the processes associated with long-haul delivery of mixtures, engineering forecasting, mathematical simulation with alternative calculation variants for the purpose of developing recommendations.
      Findings. Parameters of concentration and leaching tailings transportation under the force mode of a vibration wire were calculated in detail for the case of the haul length exceeding potential of the gravity flow. Calculation schemes for determining head losses and the flow critical velocity are created by alternative methods and ranked according to the reliability degree.
      Originality.Basic points of the new method for controlling indices of mixture preparation and transportation by changing the head and the feed rate of mixtures are defined for combined mineral mining.
      Practical implications. Solving the problem of hydromixture transportation under the force mode by joint application of accumulated industrial experience and simulation of delivery processes for combined mineral mining in order to achieve a complex environmental and economic effect.
      Keywords: deposit, hydromixture, transportation, pipeline, ore, simulation, vibration
      REFERENCES
Adibi, N., Ataeepour, M., & Rahmanpour, M. (2015). Integration of sustainable development concepts in open pit mine design. Journal of Cleaner Production, (108), 1037-1049.
https://doi.org/10.1016/j.jclepro.2015.07.150
Besedin, P., Trubayev, P., Panova, O., & Grishko, B. (2011). Nekotoryye napravleniya energosberezheniya v tekhnologii tsementa. Tsement i ego Primeneniye, (2), 130-134.
Bol’shakov, V. (1984). Spravochnik po gidravlike. Kyiv: Vyshcha shkola.
Chen, T., Lei, C., Yan, B., & Xiao, X. (2014). Metal recovery from the copper sulfide tailing with leaching and fractional precipitation technology. Hydrometallurgy, (147-148), 178-182.
https://doi.org/10.1016/j.hydromet.2014.05.018
Chugh, Y.P., & Behum, P.T. (2014). Coal waste management practices in the USA: An overview. International Journal of Coal Science & Technology, 1(2), 163-176.
https://doi.org/10.1007/s40789-014-0023-4
Dmitrak, Yu., & Kamnev, Ye. (2016). AO “Vedushchiy proyektno-izyskatel’skiy i nauchno-issledovatel’skiy institut promyshlennoy tekhnologii’ – Put’ dlinoy v 65 let. Gornyy Zhurnal, (3), 6-12.
Dmitrak, Yu. (2017). Effektivnost’ vibro-transportirovaniya materialov. Nauchnyy Vestnik YUIM, (4), 24-29.
Doifode, S., & Matani, A. (2015). Effective industrial waste utilization technologies towards cleaner environment. International Journal of Chemical and Physical Sciences, (4), 536-540.
Golik, V., Komashchenko, V., & Morkun, V. (2015). Innovative technologies of metal extraction from the ore processing mill tailings and their integrated use. Metallurgical and Mining Industry, (3), 49-52.
Golik, V., Morkun, V., Morkun, N., & Gaponenko, I. (2018). Improvement of hole drilling technology for ore drawing intensification. Mining of Mineral Deposits, 12(3), 63-70.
https://doi.org/10.15407/mining12.03.063
Jang, H., Topal, E., & Kawamura, Y. (2015). Decision support system of unplanned dilution and ore-loss in underground stoping operations using a neuro-fuzzy system. Applied Soft Computing, (32), 1-12.
https://doi.org/10.1016/j.asoc.2015.03.043
Kachurin, N., Kalayeva, S., Korchagina, T., & Stas, G. (2016). Geoekologicheskaya otsenka effektivnosti zashchity okruzhayushchey sredy i prirodo-okhranitel’nykh meropriyatiy pri podzemnoy dobyche uglya. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o Zemle, (3), 62-79.
Kachurin, N., Stas, G., Kalayeva, S., & Korchagina, T. (2016). Geoekologicheskaya otsenka effektivnosti zashchity okruzhayushchey sredy i prirodo-okhranitel’nykh meropriyatiy pri podzemnoy dobyche uglya. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o Zemle, (3), 63-81.
Komashchenko, V., Vasil’yev, P., & Maslennikov, S. (2016). Tekhnologiyam podzemnoy razrabotki mestorozhdeniy KMA – nadezhnuyu syr’yevuyu osnovu. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o Zemle, (2), 95-101.
Krupnik, L., Shaposhnik, Yu., Shaposhnik, S., Nurshabekova, G., & Tungushbayeva, Z. (2017). Razrabotka tekhnologii zakladochnykh rabot na osnove tsementno-shlakovogo vyazhushchego na Orlovskom rudnike. FTPRRMPI, (1), 58-64.
Lyashenko, V. (2015). Prirodookhrannyye tekhnologii osvoyeniya slozhnostrukturnykh mestorozhdeniy poleznykh iskopayemykh. Marksheyderskiy Vestnik, (1), 10-15.
Morkun, V.S., Morkun, N.V., & Tron, V.V. (2017). Automatic control of the ore suspension solid phase parameters using high-energy ultrasound. Radio Electronics, Computer Science, Control, (3), 175-182.
https://doi.org/10.15588/1607-3274-2017-3-19
Morkun, V., Semerikov, S., & Hryshchenko, S. (2017). Content and teaching technology of course “Ecological geoinformatics” in training of future mining engineers. Information Technologies and Learning Тools, 57(1), 115-125.
Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1), 61-67.
Mwase, J.M., Petersen, J., & Eksteen, J.J. (2012). A conceptual flowsheet for heap leaching of platinum group metals (PGMs) from a low-grade ore concentrate. Hydrometallurgy, (111-112), 129-135.
https://doi.org/10.1016/j.hydromet.2011.11.012
Rylnikova, M. (2017). Resursosberezheniye i energoeffektivnost’ pri kombinirovannoy geotekhnologii. Kombinirovannaya Geotekhnologiya: Resursosberezheniye i Energoeffektivnost’, 18-21.
Rylnikova, M., & Peshkov, A. (2014). Obosnovaniye trebovaniy k kachestvu tekhnogennogo syr’ya pri polnom tsikle kompleksnogo osvoyeniya medno-kolchedannykh mestorozhdeniy. Gornyy Informatsionno-Analiticheskiy Byulleten’, (10), 164-183.
Ryzhova, L., & Nosova, Ye. (2017). K voprosu ekologo-ekonomicheskoy effektivnosti osvoyeniya tekhnogennykh mestorozhdeniy rudnykh poleznykh iskopayemykh. Gornyy Informatsionno-Analiticheskiy Byulleten’, (9), 79-85.
Sekisov, A., Shevchenko, Yu., & Lavrov, A. (2016). Perspektivy ispol’zovaniya shakhtnogo vyshchelachivaniya pri razrabotke zolotorudnykh mestorozhdeniy. FTPRRMPI, (1), 110-116.
Sinclair, L., & Thompson, J. (2015). In situ leaching of copper: Challenges and future prospects. Hydrometallurgy, (157), 306-324.
https://doi.org/10.1016/j.hydromet.2015.08.022
Urakayev, F., & Yusupov, T. (2017). Chislennaya otsenka kinematicheskikh i dinamicheskikh kharakteristik obrabotki mineralov v dezintegratore. FTPRRMPI, (1), 127-135.
Vintró, C., Sanmiquel, L., & Freijo, M. (2014). Environmental sustainability in the mining sector: Evidence from Catalan companies. Journal of Cleaner Production, (84), 155-163.
https://doi.org/10.1016/j.jclepro.2013.12.069
Yermolovich, O., & Yermolovich, Ye. (2016). Kompozitsionnyye zakladochnyye materialy s dobavkoy iz mekhanoaktivirovannykh otkhodov obogashcheniya. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o Zemle, (3), 13-24.
Zoteyev, O., Zubkov, A., Kalmykov, V., & Kutlubayev, I. (2017). Razrabotka tekhnologii podgotovki kar’yerov k skladirovaniyu khvostov obogashcheniya. Gornyy Informatsionno-Analiticheskiy Byulleten’, (9), 102-109.