Energy-saving intensification of gas-condensate field production in the east of Ukraine using foaming reagents
O. Shendrik1, M. Fyk2, V. Biletskyi2, S. Kryvulia1, D. Donskyi2, A. Alajmeen2, A. Pokhylko2
1Ukrainian Scientific Research Institute of Natural Gases, Kharkiv, Ukraine
2National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
Min. miner. depos. 2019, 13(2):82-90
https://doi.org/10.33271/mining13.02.082
Full text (PDF)
      ABSTRACT
      Purpose. Development of recommendations on the use of foaming surfactants (FSs) in the overall task of increasing energy and resource conservation of wells at the final stages of the development of gas condensate fields (GCFs).
      Methods. To achieve the goal and solve the set tasks, following methods were used: active experiment method, regression and correlation analyzes of the obtained statistical data, comparative analysis of technological regulations for the intensification of well production.
      Findings. Recommendations on the use of the studied FSs for intensifying the extraction of gas-condensate fluids with the specification of the geological and field characteristics of exploited fields in Eastern Ukraine in terms of Shebelynske and Zakhidno-Khrestyshchenske GСF were developed.
      Originality.The dependence of the cross-correlation coefficient of the “additional gas production with the use of FSs – the number of well stimulation operations” upon the period of the influence of the FSs on the reservoir – well system, being of extreme nature, has been determined. It has been established that the effectiveness of the use of the additional part of productions debit depends linearly on the initial production rate and exponentially on the frequency of the well FS-treatment.
      Practical implications. It has been determined that the maximum manifestation of the impact of considered FSs on downhole fluid production is achieved after 2 months. Various techniques for the application of the FSs were tested, and the regulations for the corresponding field operations were specified. Optimization of the parameter charts and processing procedures in terms of the concentration of FSs, system connection of the foam injection pipeline to the well, the rational period of introduction of the FSs in the reservoir-well system results in the decrease of the total downtime of wells during the period of operation under conditions of intensification as well as methane pollutions during purges.
      Keywords: resource saving, gas condensate field, geological field conditions, well flow rate, foaming surfactants, foam surface-active substances
      REFERENCES
Biletskyi, V., Shendrik, T., & Sergeev, P. (2012). Derivatography as the method of water structure studying on solid mineral surface. Geomechanical Processes During Underground Mining, 181-184.
https://doi.org/10.1201/b13157-31
Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
Dean, J.F., Middelburg, J.J., Röckmann, T., Aerts, R., Blauw, L.G., Egger, M., & Dolman, A.J. (2018). Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56(1), 207-250.
https://doi.org/10.1002/2017rg000559
Dubiel, S., Rzyczniak, M., Solecki, M., & Maruta, M. (2017). Analysis of drill stem test (DST) results at Osobnica oil field, in terms of sampling of selected technology parameters. AGH Drilling, Oil, Gas, 34(2), 375.
https://doi.org/10.7494/drill.2017.34.2.375
Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Y.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197.
https://doi.org/10.1016/j.acme.2018.01.012
Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112.
https://doi.org/10.1201/b17547-20
Fesenko, Yu.L., Kul, A.Yo., Shcherbyna, O.V., Fyk, I.M., Volosnyk, Ye.O., Kaplunovskyi, A.O., & Shcherbyna, V.H. (2007). Pinoutvoriuvach “Reahent dlia piny RP-1”. Patent No. 25655. Ukraina.
Fesenko, Yu.L., & Volosnyk, Ye.O. (2009). Stan i perspektyvy rozrobky Shebelynskoho hazokondensatnoho rodovyshcha. Oil and Gas Industry, (5-6), 24-28.
Fesenko, Iu.L., Fyk, I.M., Kryvulia, S.V., Shendryk, O.M., & Kotsaba, V.I. (2011). Osoblyvosti vyznachennia debetiv sverdlovyn hazovykh ta hazokondensatnykh rodovyshch piznoi stadii rozrobky. Problems of Gas Industry Development in Ukraine: Proceedings Scientific Publication of Ukrainian Scientific Research Institute of Natural Gases, (XXXІX), 172-177.
Fyk, I.M., & Shendryk, O.M. (2006). Pidvyshchennia vydobutku hazu optymizatsiieiu termobarychnykh umov ekspluatatsii sverdlovyn. Prospecting and Development of Oil and Gas Fields. Proceedings Scientific publication of Ivano-Frankivsk National Technical University of Oil and Gas, 4(21), 66-70.
Guet, S., & Ooms, G. (2006). Fluid mechanical aspects of the gas-lift technique. Annual Review of Fluid Mechanics, 38(1), 225-249.
https://doi.org/10.1146/annurev.fluid.38.061505.093942
Hnitko, A.V., Volovyk, L.V., Domin, A.V., Zhmurkov, V.I., & Popovychenko, S.B. (2009). Doslidzhennia efektyvnosti vydalennia ridyny zi sverdlovyn Shebelynskoho HKR v zalezhnosti vid kontsentratsii PAR. Problems of Gas Industry Development in Ukraine: Proceedings Scientific Publication of Ukrainian Scientific Research Institute of Natural Gases, (XXXVІІ), 186-190.
Hnitko, A.V., Domin, A.V., Zhmurkov, V.I., Kohuch, D.M., Ivashko, Z.I., & Bilyk, O.A. (2013). Eksperyment z masovoho zastosuvannia rozchynu poverkhnevo-aktyvnykh rechovyn na sverdlovynakh Shebelynskoho rodovyshcha. Problems of Gas Industry Development in Ukraine: Proceedings Scientific Publication of Ukrainian Scientific Research Institute of Natural Gases, (XLІ), 160-163.
Hnitko, A.V., Domin, A.V., & Zhmurkov, V.I. (2014). Analiz efektyvnosti robit iz zastosuvannia poverkhnevo-aktyvnykh rechovyn na Shebelynskomu HKR u 2013 rotsi. Problems of Gas Industry Development in Ukraine: Proceedings Scientific Publication of Ukrainian Scientific Research Institute of Natural Gases, (XLІІ), 54-58.
Hou, D., Luo, P., Sun, L., Tang, Y., & Pan, Y. (2014). Study on nonequilibrium effect of condensate gas reservoir with gaseous water under HT and HP condition. Journal of Chemistry, (2014), 1-8.
https://doi.org/10.1155/2014/295149
Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.
Li, S., Li, Z., Lin, R., & Li, B. (2010). Modeling of sand cleanout with foam fluid for vertical well. SPE Journal, 15(03), 805-811.
https://doi.org/10.2118/120449-pa
Moumen, A., Azizi, G., Chekroun, K.B., & Baghour, M. (2016). The effects of livestock methane emission on the global warming: a review. International Journal of Global Warming, 9(2), 229.
https://doi.org/10.1504/ijgw.2016.074956
Nicolae, I., & Firu, L.S. (2014). Corrosion management – an overview of the corrosion control process in OMV petrom. SPE International Oilfield Corrosion Conference and Exhibition, 277-292.
https://doi.org/10.2118/169632-ms
Orta, D.R., Fosdick, M.L., Yang, J., Ramachandran, S., Salma, T., Long, J.J., & Salinas, O. (2007). A novel foamer for deliquification of condensate-loaded wells. Rocky Mountain Oil & Gas Technology Symposium.
https://doi.org/10.2118/107980-ms
Ramachandran, S., Al-Muntasheri, G., Leal, J., & Wang, Q. (2015). Corrosion and scale formation in high temperature sour gas wells: chemistry and field practice. SPE International Symposium on Oilfield Chemistry, 80-102.
https://doi.org/10.2118/173713-ms
Santos, O.G., Bordalo, S.N., & Alhanati, F.J. (2001). Study of the dynamics, optimization and selection of intermittent gas-lift methods – a comprehensive model. Journal of Petroleum Science and Engineering, 32(2-4), 231-248.
https://doi.org/10.1016/s0920-4105(01)00164-4
Shcherbyna, O.V., Fyk, I.M., Kaplunovskyi, A.O., & Shcher-byna, V.H. (2009). Pinoutvoriuvach “Reahent dlia piny RP-1k” dlia vydalennia vuhlevodnevoho kondensatu z privybiinoi zony plasta, vyboiu ta stovbura sverdlovyny. Patent No. 85462. Ukraina.
Sun, X., & Bai, B. (2017). Comprehensive review of water shutoff methods for horizontal wells. Petroleum Exploration and Development, 44(6), 1022-1029.
https://doi.org/10.1016/s1876-3804(17)30115-5
Volovetskyi, V.B., Shchyrba, O.M., Vytiaz, O.Yu., & Doroshenko, Ya.V. (2013). Zbilshennia obsiahiv vidboru hazu v umovakh periodychnoi ekspluatatsii hazokondensatnykh sverdlovyn. Scientific Helard of Ivano-Frankivsk National Technical University of Oil and Gas, 2(35), 111-120.
Volovetskyi, V.B., Shchyrba, O.M., & Vytiaz, O.Iu. (2014). Rozroblennia kompleksnykh zakhodiv, spriamovanykh na pidvyshchennia efektyvnosti vydobuvannia vuhlevodniv pry rozrobtsi rodovyshch na vysnazhennia. Prospecting and Development of Oil and Gas Fields. Proceedings Scientific publication of Ivano-Frankivsk National Technical University of Oil and Gas, 3(52), 154-165.