Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine

M. Petlovanyi1, O. Kuzmenko1, V. Lozynskyi1, V. Popovych2, K. Sai1, P. Saik1

1Dnipro University of Technology, Dnipro, Ukraine

2Lviv State University of Life Safety, Lviv, Ukraine


Min. miner. depos. 2019, 13(1):24-38


https://doi.org/10.33271/mining13.01.024

Full text (PDF)


      ABSTRACT

      Purpose. Analysis of the man-made mineral formations of ore mining and smelting, fuel and energy complexes development accumulation, location and prospects amount in the Dnipropetrovsk region.

      Methods. Comprehensive approach, including analysis of state statistics, waste handling sites (WHSs), regional environmental report, environmental passport of the region, as well as data from other information sources is used in the work. Aerial photographs of man-made formations were obtained using the Google Earth 7.1.8 satellite program.

      Findings. The analysis of the main man-made mineral formations of ore mining and smelting, fuel and energy complexes accumulation in Ukraine (coal and mining industry waste heaps, tailing dumps, ash dumps, smelter slag dumps) was conducted, their amount and occupied areas were estimated. According to the densest location of man-made formations, they are divided into 4 regions: the Prydniprovsk region, the Kryvyi Rih region, the Nikopol region, the Pavlohrad region. According to information sources, the content of some valuable components in man-made formations has been established. Based on the world market prices of technogenic deposits components research, it was proposed to grade them according to the cost of valuable components. The promising directions have been proposed for the use of mineral resources in various economic sectors. It is noted that from the perspective of development of mineral and raw materials potential, the bulk formations are of interest because of their large reserves in the minimum area. But from the perspective of environmental protection and the interests of the Ukrainian people, the bulk technogenic formations occupying significant areas of agricultural land and having smaller mineral reserves are of great interest.

      Originality.The conception of man-made raw material mineral fund for further industrial development as an alternative to natural deposits is extended and systematized. For the first time, an integrated and detailed analysis has been performed of technogenic waste of the largest waste storage region in Ukraine, as well as the grouping has been proposed of mining and energy sector waste by density of location and by the contained components value.

      Practical implications. A sketch-map of the man-made objects location was drawn up and their gradation was carried out according to the preliminary prospects of their development. This will provide a more objective approach to the concept of industrial waste development and planning the strategy for the development of mineral and raw materials potential both at the state and regional levels.

      Keywords: man-made waste formations and deposits, waste heaps, tailing dumps, ash dumps, smelter slag dumps, commercial exploitation, gradation


      REFERENCES

Afum, B.O., Caverson, D., & Ben-Awuah, E. (2018). A conceptual framework for characterizing mineralized waste rocks as future resource. International Journal of Mining Science and Technology.
https://doi.org/10.1016/j.ijmst.2018.07.002

Aleshin, A.A., Kazachkov, E.A., & Ostroushko, A.V. (2007). Povyshenie effektivnosti pererabotki tverdykh metallurgicheskikh shlakov. Vіsnyk Pryazovskoho Derzhavnoho Tekhnіchnoho Unіversytetu, (17), 220-223.

Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016.
https://doi.org/10.1051/e3sconf/20186000016

Belogay, P.D., & Zelikov, M.A. (2000). Opyt osvoeniya technogennykh titano-tsirkonievykh rossypey Pridneprov’ya. Tekhnogennye Rossypi. Problemy. Resheniya, 132-136.

Bini, C., Maleci, L., & Wahsha, M. (2017). Mine waste: assessment of environmental contamination and restoration. Assessment, Restoration and Reclamation of Mining Influenced Soils, 89-134.
https://doi.org/10.1016/b978-0-12-809588-1.00004-9

Bol’shakov, V.I., Vasilenko, S.P., & Galetskiy, L.S. (2009). Gorno-metallurgicheskiy kompleks Ukrainy (tsifry, fakty, kommentarii). Kyiv: Nauka.

Bondarenko, V., Griadushchiy, Y., Dychkovskiy, R. Korz, P., & Koval, O. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2-7.
https://doi.org/10.1201/noe0415436700.ch1

Bondarenko, V.I., Vivcharenko, A.V., & Yarkovych, A.I. (2013). New technique of coal mining very thin seams with leaving rock in mine. Szkola Eksplotacji Podziemnej, 75-81.

Bragin, Yu.N. (2000). Tekhnogennye rossypi Fe-Mn mineralov v Ukraine. Tamzhe, 28-33.

Chetverik, M., Babiy, E., & Bubnova, E. (2013). The main technical solutions in rational excavation of minerals in open-pit mining. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 173-176.
https://doi.org/10.1201/b16354-31

Chetveryk, M., Bubnova, O., Babii, K., Shevchenko, O., & Moldabaev, S. (2018). Review of geomechanical problems of accumulation and reduction of mining industry wastes, and ways of their solution. Mining of Mineral Deposits, 12(4), 63-72.
https://doi.org/10.15407/mining12.04.063

Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials, (94), 521-527.
https://doi.org/10.1016/j.conbuildmat.2015.07.029

Dnipropetrovsk regional state administration. (2019). Retrieved from
http://old.adm.dp.gov.ua/OBLADM/obldpeng.nsf/home.xsp

Evdokimov, S.I., Maslakov, M.P., & Evdokimov, V.S. (2016). Construction materials based on wastes from mining and metallurgical industries. Procedia Engineering, (150), 1574-1581.
https://doi.org/10.1016/j.proeng.2016.07.120

Frolova, Yu.K. (2007). Prichiny vozniknoveniya i perspektivy ispol’zovaniya tekhnogennykh mestorozhdeniy. Gornyy Informatsionno-Analiticheskiy Byulleten’, (7), 24-32.

Galetskiy, L.S., & Egorova, T.M. (2008). Regional’nyy ekologo-geokhimicheskiy analiz vliyaniya tyazhelykh metallov promyshlennykh otkhodov na sostoyanie okruzhayushchey sredy Ukrainy. Ekolohiia Dovkillia ta Bezpeka Zhyttiediialnosti, (5), 10-14.

Galich, S.A. (2007). Perspektivy ispol’zovaniya zoloshlakov TES v kachestve mikroudobreniya dlya pochv. Sotrudnichestvo dlya Resheniya Problemy Otkhodov, 108-109.

Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 35-40.
https://doi.org/10.1201/b13157-7

Haibin, L., & Zhenling, L. (2010). Recycling utilization patterns of coal mining waste in China. Resources, Conservation and Recycling, 54(12), 1331-1340.
https://doi.org/10.1016/j.resconrec.2010.05.005

Hladii, O.V. (2017). Pravove rehuliuvannia opodatkuvannia diialnosti, poviazanoi z vykorystanniam tekhnohennykh rodovyshch. Yurydychnyi Naukovyi Elektronnyi Zhurnal, (2), 64-66.

Hubina, V.H., Hubin, H.H., & Yarosh, T.P. (2015). Pro rechovynnyi sklad chervonykh shlamiv. Visnyk Kryvorizkoho Tekhnichnoho Universytetu, (40), 78-83.

Infogeo.ru. (2019). Retrieved from
http://www.infogeo.ru

Kasimov, A. M., Udalov, I. V., & Stalinskaya, I. V. (2016). Development of waste disposal effective technologies by power generating and chemical industries. Visnyk of V.N Karazin Kharkiv national university-series geology geography ecology, (45), 139-147.

Kasmaee, S., Tinti, F., & Bruno, R. (2018). Characterization of metal grades in a stockpile of an Iron Mine (Case study - Choghart iron mine, Iran). Rudarsko-Geološko-Naftni Zbornik, 33(2), 51-59.
https://doi.org/10.17794/rgn.2018.2.5

Kendzera, O., & Semenova, Y. (2018). The influence of the sedimentary strata on the seismic oscillation on the teritory Tashlyk hydroelectric pumped storage power plant. Geodynamics, 24(1), 91-99.
https://doi.org/10.23939/jgd2018.01.091

Khobotova, E.B., & Kalmykova, Yu.S. (2012). Sravnitel’nyy analiz khimiko-mineralogicheskogo sostava otval’nogo i granulirovannogo domennogo shlaka. Zbirnyk Naukovykh Prats PAT “UkrNDІVohnetryvіv іm. A.S. Berezhnogo”, (112), 230-237.

Khobotova, E.B., & Kalmykova, Yu.S. (2014). Zashchita okruzhayushchey prirodnoy sredy pri utilizatsii otval’nykh domennykh shlakov v proizvodstve stroitel’nykh materialov. Kharkiv: KhNADU.

Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 265-269.
https://doi.org/10.1201/b19901-47

Kopach, P.I., & Chilii, D.V. (2012). Analiz protsesiv vidkhodo-utvorennia na vyrobnytstvakh hirnycho-metalurhiinoho rehionu. Ekolohiia i Pryrodokorystuvannia, (15), 118-132.

Krook, J., Svensson, N., & Eklund, M. (2012). Landfill mining: a critical review of two decades of research. Waste Management, 32(3), 513-520.
https://doi.org/10.1016/j.wasman.2011.10.015

Kuz’menko, A., Pochepov, V., & Ryabychev, V. (2010). Depen-dence of effectiveness of development of mining operations on processibility of coal seams deposits with thickness of 1.2 m. New Techniques and Technologies in Mining, 51-55.
https://doi.org/10.1201/b11329-10

Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 45-48.
https://doi.org/10.1201/b16354-10

Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469.
https://doi.org/10.1201/b17547-79

Lèbre, É., Corder, G.D., & Golev, A. (2017). Sustainable practices in the management of mining waste: a focus on the mineral resource. Minerals Engineering, (107), 34-42.
https://doi.org/10.1016/j.mineng.2016.12.004

Lima, A.T., Mitchell, K., O’Connell, D.W., Verhoeven, J., & Van Cappellen, P. (2016). The legacy of surface mining: remediation, restoration, reclamation and rehabilitation. Environmental Science & Policy, (66), 227-233.
https://doi.org/10.1016/j.envsci.2016.07.011

Liu, J., Yu, Q., Zuo, Z., Yang, F., Duan, W., & Qin, Q. (2017). Blast furnace slag obtained from dry granulation method as a component in slag cement. Construction and Building Materials, (131), 381-387.
https://doi.org/10.1016/j.conbuildmat.2016.11.040

Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z. & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300.
https://doi.org/10.29227/IM-2018-02-36

Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, (60), 00005.
https://doi.org/10.1051/e3sconf/20186000005

Malashkevych, D., Sotskov, V., Medyanyk, V., & Prykhodchenko, D. (2018). Integrated evaluation of the worked-out area partial backfill effect of stress-strain state of coal-bearing rock mass. Solid State Phenomena, (277), 213-220.
https://doi.org/10.4028/www.scientific.net/ssp.277.213

Mnukhin, A.G. (2009). Porodnye otvaly – syr’ye budushchego. Ugol’ Ukrainy, (5), 28-32.

Natsionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Ukraini u 2014 rotsi. (2014). Kyiv: Ministerstvo ekolohii ta pryrodnykh resursiv Ukrainy.

Nikolaienko, K.V., Yevtiekhov, V.D., Babets, Ye.K., Filenko, V.V., & Petrukhin, A.V. (2012). Rozrobka tekhnolohii zbahachennia tekhnohennoi syrovyny u vyhliadi zalizo-vmisnykh khvostiv dlia otrymannia z nykh kontsentratu z vmistom zaliza ne menshe 65%. Zbahachennia Korysnykh Kopalyn, 48(89), 168-172.

Oliinyk, T.A., & Prokopchuk, D.S. (2016). Rozrobka kompleksnoi tekhnolohii zbahachennia shlakiv TES. Rozvytok Promyslovosti ta Suspilstva, (1), 317-318.

Paranko, I.S., Yevtiekhov, V.D., & Sydorenko, V.D. (2007). Shliakhy vyrishennia aktualnykh problem Kryvorizkoho baseinu v umovakh staloho rozvytku rehionu. Heoloho-Mineralohichnyi Visnyk, 1(17), 5-11.

Peregudov, V.V., Gritsina, A.E., & Dragun, B.T. (2010). Current state and future development of iron-ore industry in Ukraine. Metallurgical and Mining Industry, 2(2), 145-151.

Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35.
https://doi.org/10.29202/nvngu/2018-4/3

Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology, 28(6), 917-923.
https://doi.org/10.1016/j.ijmst.2018.05.014

Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91.
https://doi.org/10.17794/rgn.2019.1.8

Popovich, V.V. (2016). Phytomeliorative recovery in reduction of multi-element anomalies influence ofdevastated landscapes. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(1), 94-114.
https://doi.org/10.15421/201606

Popovych, V., Kuzmenko, O., Voloshchyshyn, A., & Petlova-nyi, M. (2018). Influence of man-made edaphotopes of the spoil heap on biota. E3S Web of Conferences, (60), 00010.
https://doi.org/10.1051/e3sconf/20186000010

Prosandieiev, M.I. (2013). Osoblyvosti tekhnohennykh rodovyshch ta deiaki pravovi aspekty yikh ekspluatatsii. Ekolohiia i Pryrodokorystuvannia, (17), 130-134.

Prybylova, V.M. (2013). Otsinka vplyvu tekhnohennoho navantazhennia na heolohichne seredovyshche ta osoblyvosti nakopychennia zabrudniuvachiv v zoni rozmishchennia Zmiivskoi TES (Kharkivska oblast). Visnyk Kharkivskoho Natsionalnoho Universytetu im. V.N. Karazina. Seriia: Heolohiia. Heohrafiia. Ekolohiia, (39), 237-242.

Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha Dnipropetrovskoi oblasti za 2015 rik. (2016a). Dnipro: Departament ekolohii ta pryrodnykh resursiv Dnipropetrovskoi oblderzhadministratsii.

Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha Donetskoi oblasti za 2015 rik. (2016b). Pokrovsk: Departament ekolohii ta pryrodnykh resursiv Donetskoi oblderzhadministratsii.

Rusina, V.V. (2007). Mineral’nye vyazhushchie veshchestva na osnove mnogotonnazhnykh promyshlennykh otkhodov. Bratsk: GOU VPO “BrGU”.

Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231.
https://doi.org/10.4028/www.scientific.net/ssp.277.221

Shaw, R.A., Petavratzi, E., & Bloodworth, A.J. (2013). Resource recovery from mine waste. Waste as a Resource, 44-65.
https://doi.org/10.1039/9781849737883-00044

Solovey, V.V., Vorob’yeva, I.A., & Volovina, T.V. (2006). Tekhnologiya utilizatsii zoloshlakovykh otkhodov tverdotoplivnykh elektrostantsiy. Sotrudnichestvo dlya Resheniya Problemy Otkhodov, 142-143.

Sotskov, V.O., Podvyhina, O.O., Dereviahina, N.I., & Malashkevych, D.S. (2018). Substantiating the criteria for applying selective excavation of coal deposits in the Western Donbass. Journal of Geology, Geography and Geoecology, 26(1), 158-164.
https://doi.org/10.15421/111817

State Statistics Service of Ukraine. (2019). Retrieved from
http://www.ukrstat.org

Streltsov, V., Evtekhov, V., & Evtekhova, A. (2017). Some mineralogical zoning features of iron ore riebeckite metasomatites in the Kryvyi Rih Basin. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 1(76), 52-57.
https://doi.org/10.17721/1728-2713.76.08

Sun, W., Wang, H., & Hou, K. (2018). Control of waste rock-tailings paste backfill for active mining subsidence areas. Journal of Cleaner Production, (171), 567-579.
https://doi.org/10.1016/j.jclepro.2017.09.253

Vilkul, Yu.G., Azaryan, A.A., & Kolosov, V.A. (2013). Pererabotka i kompleksnoe ispol’zovanie mineral’nogo syr’ya tekhnogennykh mestorozhdeniy. Gornyy Vestnik, 1(96), 3-10.

Zhang, L., & Xu, Z. (2018). A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes. Journal of Cleaner Production, (202), 1001-1025.
https://doi.org/10.1016/j.jclepro.2018.08.073

Zhukovskiy, T.F. (2010). Resursosberegayushchaya i ekologicheski orientirovannaya tekhnologiya polucheniya vanadievoy produktsii iz otkhodov proizvodstva. Visnyk Natsionalnoho Tekhnichnoho Universytetu “KhPI”. Seriia: Khimiia, Khimichna Tekhnolohiia i Ekolohiia, (13), 29-35.

Zubova, L.G. (2004). Terrikoniki ugol’nykh shakht – istochnik syr’ya dlya polucheniya galliya, germaniya, vismuta. Ugol’ Ukrainy, (1), 41-42.

Лицензия Creative Commons