Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Experimental studies of the seam openings competence in different methods of protection under pitch and steep coal seams development

Ya. Liashok1, I. Iordanov1, D. Chepiga1, S. Podkopaiev1

1Donetsk National Technical University, Pokrovsk, Ukraine


Min. miner. depos. 2018, 12(4):9-19


https://doi.org/10.15407/mining12.04.009

Full text (PDF)


      ABSTRACT

      Purpose. Investigation of the seam openings competence in different methods of protection in complex mining and geological conditions of pitch and steep coal seams development of Donbas.

      Methods. To achieve this purpose, the research uses a complex approach, including analysis and generalization of the openings protection experience, studying the static field of stress distribution in a coal-rock mass on cloudy crystal ball model, a mine experiment to study the haulage gate hardness and the experimental data.

      Findings. When studying the wall-rock displacements on the haulage gate contour, it was recorded that in the case of yieldable protective facilities usage for seam openings, the roof and foot convergence of the coal bed mining as the productive workings advance is observed until the complete protective facilities compression, and in the zone of steady rock pressure is damped. In the case of coal pillars usage for roadway protection, after the destruction their hardness varies in a linear fashion, which contributes to a significant deterioration in the haulage gate stability behind the face. The use of a goaf stowing for the seam opening protection, from the point of view of stresses distribution in the coal-rock mass, ensures a gentle deflection of the wall-rocks behind the face by increasing the area of the subside strata actual contact with the filling mass, when compared with the roadway protection with the coal pillars.

      Originality. The effectiveness of the applied method for the seam openings protection is proposed to be evaluated according to the change in the stability of the haulage gate, but taking into account the hardness of the protective facilities. The hardness of protective facilities reflects their ability to resist deformation when the delaminated rock strata is displaced and depends on the value of the external force, the time factor, and the geological conditions of the developed coal seam.

      Practical implications. The use of a goaf stowing, as a method for controlling the roof or for wide yielding seats located above the roadway, will allow the haulage gates operational condition to be operational and increase the safety of work while maintaining the workings.

      Keywords: haulage gate, displacement, pillar, protective facilities, goaf stowing, delaminated rock strata


      REFERENCES

Alsiya, S., Lekshmi, C.J., Priya, B.P.J., & Mehta, R.C. (2016). Image processing algorithm for fringe analysis in photoelasticity. Scholars Journal of Engineering and Technology, 4(7), 325-328.
https://doi.org/10.21276/sjet.2016.4.7.5

Baklashov, I.V. (2004). Geomehanika. Moskva: Izdatel’stvo Moskovskogo Gornogo Instituta.

Das, A.J., Mandal, P.K., Bhattacharjee, R., Tiwari, S., Kushwaha, A., & Roy, L.B. (2017). Evaluation of stability of underground workings for exploitation of an inclined coal seam by the ubiquitous joint model. International Journal of Rock Mechanics and Mining Sciences, (93), 101-114.
https://doi.org/10.1016/j.ijrmms.2017.01.012

Fekmistov, Yu.G., & Golovin, A.D. (2015) Obosnovanie raspredeleniya davleniya na tseliki v osadochnyh gornyh porodah. Litosfera, (6), 130-135.

Hoek, E. (2002). Practical rock engineering. London, United Kingdom: Institution of Mining and Metallurgy.

Ikrin, V.A. (2004). Soprotivlenie materialov s elementami teorii uprugosti i plastichnosti. Moskva: Izdatelstvo ASV.

Iordanov, I.V., Chepiga, D.A., Kolomiets, V.A., Podkopaev, E.S., Korol, A.V., & Dovgal, V.Yu. (2018) O vliyanii izgibnyh deformatsiy na sostoyanie krovli ugolnogo plasta pri vnezapnyh obrusheniyah porodnoy tolschi. Visnyk Natsio-nalnoho tekhnichnoho universytetu “Kharkivskyi politekh-nichnyi instytut”, 16(1992), 27-40.
https://doi.org/10.209998/2413-4295.2018.16.05

Karkashadze, G.G. (2004). Mehanicheskoe razrushenie gornyh porod. Moskva: Izdatelstvo MGGU.

Khani, A., Baghbanan, A., Norouzi, S., & Hashemolhosseini, H. (2013). Effects of fracture geometry and stress on the strength of a fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, (60), 345-352.
https://doi.org/10.1016/j.ijrmms.2013.01.011

Kumpyak, O.G., & Mescheulov, N.V. (2017) Chislennoe mo-delirovanie podatlivyih opor v vide trub koltsevogo secheniya pri staticheskom i kratkovremennom dinamicheskom nagruzhenii. Vestnik Tomskogo Gosudarstvennogo Arhitek-turno-Stroitelnogo Universiteta, (5), 121-134.

Lawson, H.E., Tesarik, D., Larson, M.K., & Abraham, H. (2017). Effects of overburden characteristics on dynamic failure in underground coal mining. International Journal of Mining Science and Technology, 27(1), 121-129.
https://doi.org/10.1016/j.ijmst.2016.10.001

Nikolin, V.I., Podkopaev, S.V., Agafonov, A.V., & Maleev, N.V. (2005). Snizhenie travmatizma ot proyavleniy gornogo davleniya. Donetsk: Nord-Press.

Norel, B.K. (1983). Izmenenie mehanicheskoy prochnosti ugolnogo plasta v massive. Moskva: Nauka.

Obiralov, A.I., Limonov, A.N., & Gavrilova, N.A. (2004). Fotogrammetriya. Moskva: Kolos S.

Protosenya, A.G., & Verbilo, P.E. (2017) Raschet nesuschey sposobnosti i izuchenie anizotropii prochnostnyh harakte-ristik mezhdukamernyh tselikov v blochnom gornom massive. Innovatsionnye napravleniya v proektirovanii gornodobyvayuschih predpriyatiy: Geomehanicheskoe obespechenie proektirovaniya i soprovozhdeniya gornyh rabot, 219-225.

Rusakov, A.I. (2003). Korrektnyi raschet privedennyh mass pri udare. Vestnik RGUPS, (2), 134-137.

Shakirzyanov, R.A., & Shakirzyanov, F.R. (2005). Dinamika i ustoychivost sooruzheniy. Kazan’: Izdatel’stvo Kazanskogo gosudarstvennogo arhitekturno-stroitelnogo universiteta.

Shashenko, A.N., Pustovoytenko, V.P., & Sdvizhkova, E.A. (2016). Geomehanika. Kyiv: Naukovyi druk.

Sokolovskiy, V.V. (1969). Teoriya plastichnosti. Moskva: Vysshaya shkola.

Stepanova, L.V., & Dolgih, V.S. (2017). Tsifrovaya obrabotka rezultatov optoelektronnyh izmereniy. Metod fotouprugosti i ego primenenie dlya opredeleniya koeffitsientov mnogoparametricheskogo asimptoticheskogo razlozheniya M. Uilyamsa polya napryazheniy. Vestnik Samarskogo Gosudarstvennogo Tehnicheskogo Universiteta. Seriya “Fiziko-Matematicheskie nauki”, 21(4), 717-735.

Surendra, K.V.N., & Simha, K.R.Y. (2015). Digital image analysis around isotropic points for photoelastic pattern recognition. Optical Engineering, 54(8), 081209.
https://doi.org/10.1117/1.oe.54.8.081209

Tajduś, A., Cała, M., & Tajduś, K. (2012). Geomechanika w budownictwie podziemnym. Kraków, Polska: Wydawnictwa AGH.

Viktorov, S.D., Iofis, M.A., & Goncharov, S.A. (2005). Sdvi-zhenie i razrushenie gornyh porod. Moskva: Nauka.

Wang, C., Zhang, C., Zhao, X., Liao, L., & Zhang, S. (2018). Dynamic structural evolution of overlying strata during shallow coal seam longwall mining. International Journal of Rock Mechanics and Mining Sciences, (103), 20-32.
https://doi.org/10.1016/j.ijrmms.2018.01.014

Yakobi, O. (1987). Praktika upravleniya gornym davleniem, Moskva: Nedra.

Zhang, W., Su, M.L., Yu, H.L., Jiao, Z., Zhang, J.H. & Yang, H.J. (2006) The elastic mechanics solution of statically indeterminate beams fixed at two sides under the action of concentrated load. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 27(4), 40-42.

Zhukov, V.E. (2001) Ob odnoy strategicheskoy oshibke v razreshenii problemy razrabotki krutyh plastov. Ugol Ukrainy, (7), 6-10.

Лицензия Creative Commons