Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Theoretical background of rock failure at hydraulic seam fracture and aftereffect analysis

V. Biletskyi1, L. Horobets2, M. Fyk1, M. Al-Sultan1,3

1National Technical University “Kharkiv Polytechnіc Institute”, Kharkіv, Ukraine

2DniproTech, Dnipro, Ukraine

3Weatherford Ltd., Baghdad, Iraq


Min. miner. depos. 2018, 12(3):45-55


https://doi.org/10.15407/mining12.03.045

Full text (PDF)


      ABSTRACT

      Purpose. Theoretical substantiation of the methodological foundations of possible effects and aftereffects identification of the hydraulic seam fracture (HSF) technology.

      Methods. The research structure and procedure includes: studying the power engineering aspect of the rock failure, the acoustical wave effects; thermodynamic analysis of rock failure, analysis of surfaces mechanoactivation at rock failure and aftereffect of the primary pore space self-development at the HSF due to the Rebinder’s effect.

      Findings. It was established that among the fundamental consistent patterns that determine the formation and development of the HSF technology aftereffects during formations mining, are the methodological provisions and criteria for failure parameters prediction and grinding effects, namely: the average and local energy density of geoenvironment destruction, efficiency of grinding, the average particle and pore size, the specific surface area, the specific energy consumption per unit of the resulting surface. The connection between the parameters of the acoustic wave and the size of the fractures, which forms the basis of the acoustic emission (AE) method, is experimentally confirmed.

      Originality. It is established that the database for evaluating the expected fracture effects in the working zone of the HSF is: AE activity, specific acoustic radiation, spectrum of signals, characteristic amplitudes under the condition of physical modeling on the model samples of the geoenvironment behavior. It is shown that the critical state of a substance corresponding to the beginning of failure at the microlevel should be considered from the standpoint of thermodynamics as a phase change (evaporation, sublimation) near the critical point, based on the temperature critical values and the specific energy of the phase change. The presence of surfaces mechanoactivation in the rock failure is experimentally proved. The hypothesis concerning the rock pore space development aftereffect during hydraulic seam fracture due to the Rebinder’s effect is presented.

      Practical implications. It is proposed to size up the degree of geoenvironment destruction in the process of the HSF by the Kd parameter, which is equal to the product of the maximum amplitude of acoustic signals on the total acoustic activity of the destruction zone. It is established that the conditions for rock failure at the HSF are determined by the relationship between the rock pressure P and the volume energy density W of the failure. It is shown that the level of surfaces mechanoactivation can be estimated by adsorption characteristics – the adsorption potential and the pH of the newly discovered surfaces.

      Keywords: hydraulic seam fracture, acoustical waves, thermodynamic analysis, mechanoactivation, the Rebinder’s effect, acoustic emission, potentiometry, pH measurement


      REFERENCES

Anderson, T.L. (2004). Fracture mechanics: fundamentals and applications. London: CRC Press, Taylor & Francis Group.

Andrade, E.N.D.C., & Randall, R.F.Y. (1949). The Rehbinder effect. Nature, 164(4183), 1127-1127.
https://doi.org/10.1038/1641127a0

Biletskyi, V.S. (2004). Mala hirnycha entsyklopediia. Tom I. Donetsk, Ukraina: Donbas.

Biletskyi, V.S. (2007). Mala hirnycha entsyklopediia. Tom II. Donetsk, Ukraina: Skhidnyi vydavnychyi dim.

Biletskyi, V.S. (2013). Mala hirnycha entsyklopediia. Tom III. Donetsk, Ukraina: Skhidnyi vydavnychyi dim.

Birdsell, D.T., Rajaram, H., Dempsey, D., & Viswanathan, H.S. (2015). Hydraulic fracturing fluid migration in the subsurface: a review and expanded modeling results. Water Resources Research, 51(9), 7159-7188.
https://doi.org/10.1002/2015wr017810

Bovenko, V.N. (1986). Osnovnye polozheniya avtokolebatel’-noy modeli predrazrushayushchego sostoyaniya tverdykh tel. Doklady Akademii Nauk SSSR, 286(5), 1097-1101.

Bovenko, V.N. (1987). Avtokolebatel’naya model’ akustoemissionnykh i seysmicheskikh yavleniy. Doklady Akademii Nauk SSSR, 297(5), 1103-1106.

Bovenko, V.N., & Gorobets, L.Zh. (1988). Vliyanie plotnosti energii razrusheniya na mekhanoaktivatsionnuyu sposobnost’ dispergirovannykh produktov. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (1), 44-49.

Bovenko, V.N. (1990). Sinergeticheskie effekty i zakonomernosti relaksatsionnykh kolebaniy v sostoyanii predraz-rusheniya tverdogo tela. Disdertatsiya doktora fiz.-mat. nauk. Moskva, Rossiya: Moskovskiy institut elektroniki i matematiki.

Davies, R.J., Mathias, S.A., Moss, J., Hustoft, S., & Newport, L. (2012). Hydraulic fractures: how far can they go? Marine and Petroleum Geology, 37(1), 1-6.
https://doi.org/10.1016/j.marpetgeo.2012.04.001

Fisher, M.K., & Warpinski, N.R. (2011). Hydraulic fracture-height growth: real data. SPE Annual Technical Conference and Exhibition, 1-18.
https://doi.org/10.2118/145949-ms

Flewelling, S.A., & Sharma, M. (2013). Constraints on upward migration of hydraulic fracturing fluid and brine. Groundwater, 52(1), 9-19.
https://doi.org/10.1111/gwat.12095

Frolov, D.I., Kil’keev, R.Sh., Kuksenko, V.S., & Novikov, S.V. (1980). Svyaz’ mezhdu parametrami akusticheskikh signa-lov i razmerami razryvov sploshnosti pri razrushenii gete-rogennykh materialov. Mekhanika Kompozitnykh Mate-rialov, (5), 907-911.

Gandossi, L., & Von Estorff, U. (2015). An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Update 2015. Brussels, Belgium: Joint Research Centre.

Gandossi, L., & Von Estorff, U. (2016). An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Scientific and technical research reports. Brussels, Belgium: Joint Research Centre.
https://doi.org/10.2790/379646

Gorobets, L.Zh., Yur’yevskaya, I.M., Korsakov, V.G., & Vdovina, T.L. (1986). Issledovanie reaktsionnoy sposobnosti mekhanicheski aktivirovannogo kvartsevogo peska. Zhurnal Prikladnoy Khimii, (1), 187-190.

Gorobets, L.Zh., & Dubrova, S.B. (1991). Vliyanie polya UVCh na effekty dispergirovaniya neodnorodnykh sred pri razrushenii pod vysokim davleniem. Fizika i Tekhnika Vysokikh Davleniy, 7(3), 6-12.

Gorobets, L.Zh., Bovenko, V.N., & Dubrova, S.B. (1995). Issledovanie evolyutsii dispergirovaniya metodom akusticheskoy emissii. Teoriya i Praktika Protsessov Izmel’cheniya i Razdeleniya, 8-14.

Gorobets, L.Zh., & Lyutyy, A.I. (1997). Svyaz’ termodinami-cheskikh parametrov gornykh porod na glubine. Suchasni Shliakhy Rozvytku Hirnychoho Obladnannia, 52-53.

Gorobets, L.Zh. (2001). O mekhanoaktivatsii gornykh porod v seysmicheskom protsesse. Heotekhnichna Mekhanika, (28), 107-111.

Gorobets, L.Zh., & Safonov, V.V. (2002). Issledovanie prirody i kharakteristik mekhanoaktivatsii izmel’chaemykh mate-rialov. Stroitel’stvo, Materialovedenie, Mashinostroenie, (21), 106-110.

Gorobets, L.Zh. (2002). Novyy teoreticheskiy podkhod k izucheniyu fragmentirovaniya v protsesse izmel’cheniya. Obrabotka Dispersnykh Materialov i Sred, (12), 30-40.

Gorobets, L.Zh. (2004). Razvitie nauchnykh osnov izmel’cheniya tverdykh poleznykh iskopaemykh. Dissertatsiya doktora tekhn. nauk. Dnepropetrovsk, Ukraina: Natsio-nal’yy gornyy universitet.

Goryunov, Yu.V., Pertsov, N.V., & Summ, B.D. (1966). Effekt Rebindera. Moskva, Rossiya: Nauka.

King, G.E. (2012). Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor, and engineer should know about hydraulic fracturing risk. Journal of Petroleum Technology, 64(04), 34-42.
https://doi.org/10.2118/0412-0034-jpt

Kuksenko, V.S. (1984). Kineticheskie aspekty protsessa razrusheniya i fizicheskie osnovy ego prognozirovaniya. Prognoz Zemletryaseniy, (4), 8-20.

Lechtenböhmer, S., Altmann, M., Capito, S., Matra, Z., Wein-drorf, W., & Zittel, W. (2011). Impacts of shale gas and shale oil extraction on the environment and on human health. Brussels, Belgium: Directorate General for Internal Policies – Policy Department A: Economic and Scientific Policy, European Parliament’s Committee on Environment, Public Health and Food Safety.

Lyutyy, A.I., Gorobets, L.Zh., & Dubrova, S.B. (1997). Termodinamicheskiy raschet kriticheskogo davleniya veshchestv i ego tekhnicheskoe prilozhenie. Fizika i Tekhnika Vysokikh Davleniy, 7(3), 81-88.

Malkin, A.I. (2012). Regularities and mechanisms of the Rehbinder’s effect. Colloid Journal, 74(2), 223-238.
https://doi.org/10.1134/s1061933x12020068

Myers, T. (2012). Potential contaminant pathways from hydraulically fractured shale to aquifers. Groundwater, 50(6), 872-882.
https://doi.org/10.1111/j.1745-6584.2012.00933.x

Petrov, V.A., & Gorobets, L.Zh. (1987). Razmernyy effekt kontsentratsionnogo poroga razrusheniya. Izvestiya Akademii Nauk SSSR. Fizika zemli, (1), 95-98.

Rozell, D.J., & Reaven, S.J. (2011). Water pollution risk associated with natural gas extraction from the Marcellus shale. Risk Analysis, 32(8), 1382-1393.
https://doi.org/10.1111/j.1539-6924.2011.01757.x

Shcherba, V.A. (2013). Ekologicheskie problemy “slantsevoy revolyutsii”. Zhurnal Sotsial’no-ekologicheskie tekhnologii, (2), 120-125.

Skoumal, R.J., Brudzinski, M.R., & Currie, B.S. (2015). Earthquakes induced by hydraulic fracturing in Poland township, Ohio. Bulletin of the Seismological Society of America, 105(1), 189-197.
https://doi.org/10.1785/0120140168

U.S. House of Representatives. (2011). Chemicals used in hydraulic fracturing. Washington, United States: U.S. House of Representatives, Committee on Energy and Commerce, Minority Staff.

Vettegren’, V.I., Kuksenko, V.S., & Tomilin, N.G. (2004). Kinetika i ierarkhiya protsessa nakopleniya treshchin v geterogennykh materialakh. Geodinamika i Napryazhennoe Sostoyanie Nedr Zemli, 373-377.

Warner, N.R., Jackson, R.B., Darrah, T.H., Osborn, S.G., Down, A., Zhao, K., & Vengosh, A. (2012). Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences, 109(30), 11961-11966.
https://doi.org/10.1073/pnas.1121181109

Лицензия Creative Commons