Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Optimization of salt crystallization process by solar energy with the use of mirror reflection, case of chott Merouane El-Oued (South East of Algeria)

S. Remli1,2, M. Bounouala1, I. Rouaiguia1,A. Benselhoub3

1Badji Mokhtar University, Annaba, Algeria

2Université Larbi Tébessi, Tébessa, Algeria

3State Agrarian and Economic University, Dnipro, Ukraine


Min. miner. depos. 2018, 12(3):97-104


https://doi.org/10.15407/mining12.03.097

Full text (PDF)


      ABSTRACT

      Purpose. This paper aims to improve the harvesting conditions of the crystallized salt layer of the Salins Merouane El Meghaier (SME) – South East of Algeria, by creating favorable conditions for means of harvesting (harvesters), thanks to the acceleration of evaporation-crystallization process of salt by using an installation of flat mirrors, which reflect solar radiation towards the evaporating surface.

      Methods. To achieve the objectives, a stall installation contains pans equipped with different mirror surfaces. Compared with other designs, this test unit is installed near the chott during the months of December and January.

      Findings. The optimization rate of salt evaporation-crystallization process depends on the surface of the reflection mirror used, which allows obtaining a layer of soft salt easy to harvest during the winter months.

      Originality. The use of mirrors reflecting solar radiation in salt pans of the unit in Salins Merouane El Meghaier enables to improve the salt exploitation conditions in quantitative, qualitative and economic terms, and to minimize the occupation of agriculture area.

      Practical implications. The exploitation of solar energy for salt production at the unit in Salins Merouane El Meghaier represents a free source, which is inexhaustible and produces no harmful impact on the environment.

      Keywords: El-Oued, lake Merouane, solar energy, optimization, evaporation, crystallization, salts


      REFERENCES

Abdel-Aal, H.K., & Al-Naafa, M.A. (1993). Enhanced evaporation of saline water in multipurpose solar desalination units. Desalination, 93(1-3), 557-562.
https://doi.org/10.1016/0011-9164(93)80130-f

Ballais, J.L. (2010). Des oueds mythiques aux rivières artificielles: l’hydrographie du Bas-Sahara Algérien. Physio-Géographie Physique et Environnement, (4), 107-127.
https://doi.org/10.4000/physio-geo.1173

Bounouala, M., Remli, S., & Talhi, K. (2015). Geochemical and mineralogical study for purpose of crystallization process optimization by solar energy: in the case of chott Merouane El-Oued Algeria. In 5th Maghreb Conference on Desalination and Water Treatment. Hammamet, Tunisia: Global Water Jobs.

Diaz, R.B.F., Stewart, S.W., & Brownson, J.R.S. (2012). Use of concentrated solar thermal energy systems to enhance sea salt production in southern Spain. In World Renewable Energy Forum. Denver, Colorado, United States: American Solar Energy Society.

Enasel. (2011). Plan d’exploitation et de valorisation du sel solaire. Rapport inédit. Chott Merouane El-Oued, Algérie: Ministère de L’Energie et des Mines.

Hacini, M., Kherici, N., & Oelkers, E.H. (2008). Mineral precipitation rates during the complete evaporation of the Merouane Chott ephemeral lake. Geochimica et Cosmochimica Acta, 72(6), 1583-1597.
https://doi.org/10.1016/j.gca.2008.01.019

Hadj Ammar, M.A., Benhaouaet, B., & Balghouthi, M. (2015). Simulation of tubular adsorber for adsorption refrigeration system powered by solar energy in sub-Sahara region of Algeria. Energy Conversion and Management, (106), 31-40.

Horri, B., Nan, C., Chen, X., & Wang, H. (2014). Modelling of solar evaporation assisted by floating light-absorbing porous materials. Current Environmental Engineering, 1(2), 73-81.
https://doi.org/10.2174/2212717801666141021001740

Huang, H., Shi, M., & Ge, X. (1999). The effect of a black insulation sheet on the evaporation rate from a shallow salt pond. International Journal of Energy Research, 23(1), 31-39.
https://doi.org/10.1002/(sici)1099-114x(199901)23:1<31::aid-er449>3.0.co;2-f

Kasedde, H., Lwanyaga, J.D., Kirabira, J.B., & Bäbler, M.U. (2015). Optimization of solar energy for salt extraction from lake Katwe, Uganda. Global NEST Journal, 16(6), 1152-1168.
https://doi.org/10.30955/gnj.001367

Mahowald, N.M., Bryant, R.G., del Corral, J., & Steinberger, L. (2003). Ephemeral lakes and desert dust sources. Geophysical Research Letters, 30(2), 46(1)-46(4).
https://doi.org/10.1029/2002gl016041

Tamimi, A., & Rawajfeh, K. (2007). Lumped modeling of solar-evaporative ponds charged from the water of the Dead Sea. Desalination, 216(1-3), 356-366.
https://doi.org/10.1016/j.desal.2006.11.022

Unesco. (1972). Etude des ressources en eau du Sahara Septentrional. Rapports sur les résultats du projet conclusion et recommandations. Paris: Unesco édition.

Yettou, F., Malek, A., Haddadi, M., & Gama1, A. (2009). Etude comparative de deux modèles de calcul du rayonnement solaire par ciel clair en Algérie. Revue des Energies Renouvelables, 12(2), 331-346.

Zhang, Y.Z., Ge, X.S., Li, Y.F., & Li, C.D. (1993). Mathe-matical simulation of evaporating brine by solar radiation for the production of salt. Journal of Thermal Science, 2(2), 143-151.
https://doi.org/10.1007/bf02718270

Zeng, Y., Yao, J., Horri, B.A., Wang, K., Wu, Y., Li, D., & Wang, H. (2011). Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy & Environmental Science, 4(10), 4074-4078.
https://doi.org/10.1039/c1ee01532j

Лицензия Creative Commons