Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Modeling the Formation of High Metal Concentration Zones in Man-Made Deposits

Z. Malanchuk1, V. Korniienko1, Ye. Malanchuk1, V. Soroka1, O. Vasylchuk1

1National University of Water and Environmental Engineering, Rivne, Ukraine

Min. miner. depos. 2018, 12(2):76-84

Full text (PDF)


      Purpose.To study conditions of forming the zones of high metal concentration in metal-containing man-made deposits. To assess the likelihood of metal concentration in the placer core.

      Methods. Analysis of the conditions determining metal-containing placers formation and of metal losses at mining and processing plants, considering the local terrain.

      Findings. It is proved that the minerals that are carried away from the separators at mining and processing plants are concentrated in the core, which contains up to 90% of heavy metals.

      Originality. The studies have determined the main factors and regularities governing the distribution of heavy metals in technogenic placers, which help identify their location and calculate parameters of high metal concentration zones in the body of a man-made deposit.

      Practical implications. The research has proved the possibility of using metal-containing technogenic placers, and finding the zones of maximum metal concentration on the basis of the established regularities. The authors have developed a mathematical model of the gradual formation of technogenic deposits with zones of heavy metals concentration in metal-containing waste.

      Keywords: metal-containing wastes, technogenic deposit, tailing storage, hydro-mixture, consistency, metal concentration


Baiysbekov, S., Ospanova, G., & Mozgovyh, G. (2006). Mining of Gold in Kazakhstan. Mining and Metallurgy in Kazakhstan, (II), 295-299.

Baranov, Yu.D., Bliuss, B.A., Semenenko, E.V., & Shuryhin, V.D. (2006). Obhruntuvannia parametriv i rezhymiv roboty system hidrotransportu hirskykh pidpryiemstv. Dnipropetrovsk: Nova ideolohiia.

Brahyn, Yu. (2006). Resursna vartist tualetnoho zbahachennia ta hidrometalurhiinoi pererobky rud chornykh ta kolorovykh metaliv v Ukraini. Mineralni Resursy Ukrainy, (3), 16-19.

Bryantseva, O.S., & Dubanov, V.G. (2011). The Environmental Accountability of Efficiency Evaluation of Processing Technogenic Formations. Economy of Region, 209-213.

Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and Other Trace Element Mobility in Waste Products and Weathered Sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229-248.

Cánovas, C.R., Macías, F., Pérez López, R., & Nieto, J.M. (2018). Mobility of Rare Earth Elements, Yttrium and Scandium from a Phosphogypsum Stack: Environmental and Economic Implications. Science of the Total Environment, (618), 847-857.

Dozic, S., Djukic, M., Bogdanovic, G., Stanojlovic, R., Lukic, S., Djunisijevic-Bojovic, D., & Bjedov, I. (2010). New Approach to the Reclamation of the Old Flotation Tai-lings in Bor. Glasnik. Sumarskog Fakulteta, (101), 35-47.

Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the Disjunctive Geological Fault Influence on the Exploitation Wells Stability during Underground Coal Gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197.

Dyusembaeva, K., & Akkazyna, N. (2017). Tonkodispersnoe zoloto v rudakh zoloto-sulfidnogo mestorozhdeniya. Vestnik KazNTU, 2(59), 106-109.

Haletskyy, L., Petrova, L., & Polska, L. (2004). Tekhnohenni vidkhody – potentsiyni dzherela utvorennia tekhnohennykh pokladiv. Visnyk Donetskoho Tekhnichnoho Universytetu, (1), 505-513.

Horlytskyy, B., Hubina, V., & Turov, V. (2004). Tekhnohenni rodovyshcha: deyaki pryntsypovi osoblyvosti ta kryterii vyznachennia. Heokhimiia ta Ekolohiia, (9), 114-117.

Jha, M.K., Kumari, A., Panda, R., Rajesh Kumar, J., Yoo, K., & Lee, J.Y. (2016). Review on Hydrometallurgical Reco-very of Rare Earth Metals. Hydrometallurgy, (161), 77-101.

Levei, E., Frentiu, T., Ponta, M., Tanaselia, C., & Borodi, G. (2013). Characterization and Assessment of Potential Environmental Risk of Tailings Stored in Seven Impoundments in the Aries River Basin, Western Romania. Chemistry Central Journal, 7(1), 5-18.

Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchyk, Ye. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif around Faulting. International Journal of Engineering Research in Africa, (35), 77-88.

Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining Features of the Process of Heavy Metals Distribution in Technogenic Placers at Hydraulic Mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51.

Mohamed, A.-M.O., & Paleologos, E.K. (2018). Stability and Safety of Engineered Barrier Systems for Waste Containment. Fundamentals of Geoenvironmental Engineering, 361-421.

Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research Results Proving the Dependence of the Copper Concentrate Amount Recovered from Basalt Raw Material on the Electric Separator Field Intensity. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 19-24.

Onuaguluchi, O., & Eren, Ö. (2012). Cement Mixtures Contai-ning Copper Tailings as an Additive: Durability Properties. Materials Research, 15(6), 1029-1036.

Wang, S., Zhang, H., Zou, Z., Wang, P., & Yu, T. (2015). Potential Risk Analysis of Tailings Dam under Preloading Condition and Its Countermeasures. Journal of Engineering and Technological Sciences, 47(1), 46-56.

Yan-xia, L., Lei, Y., Ya-jun, C., Saud, S., Jing-jing, L., Hui, Y., & Li-yuan Zhao. (2016). Landscape Transformation in Mining Wastelands. Journal of Northeast Agricultural University (English Edition), 23(1), 83-88.

Лицензия Creative Commons