Improving the Efficiency of Blasting Operations in Mines with the Help of Emulsion Explosives
V. Lyashenko1, A. Vorob’ev2,3, V. Nebohin4, K. Vorob’ev5
1Ukrainian Research and Design Institute for Industrial Technology, Zhovti Vody, Ukraine
2Atyrau University of Oil and Gas, Atyrau, Kazakhstan
3Non-Сommercial Partnership “Innovations in Subsoil Management”, Moscow, Russian Federation
4LLC “NTO Tekhnotron”, Zhovti Vody, Ukraine
5Engineering Academy of the Peoples’ Friendship University of Russia, Moscow, Russian Federation
Min. miner. depos. 2018, 12(1):95-102
https://doi.org/10.15407/mining12.01.095
Full text (PDF)
      ABSTRACT
      Purpose. To improve the efficiency of blasting operations in mines taking into consideration the upgrading of equipment used to charge blastholes as well as application of high-productive mining equipment of new generation.
      Methods. The activities used mine experimental pressure-charged blasts to break oversize material as well as mine experimental analysis of blasthole charging to estimate the improvement of efficiency of the emulsion explosives (EEs).
      Findings. It has сbeen determined that both sticked and bulk emulsion explosives of Ukrainit-PP-2 type as well as new options of charging facilities have following technological characteristics: availability of unique space-saving designs of two-component piston dosing pumps of double-action EE components; sufficiently high efficiency of blasthole charging being up to 60 kg of EE/min; ease of service and maintenance; rather long overhaul period of EE components as for the dosing pump as well as cheapness of attachable equipment; availability of both electronic and visual means to control EE preparation and charging.
      Originality. It has been proved that the improvement of blasting operations in mines results from the intensified technological processes of blasthole charging characterized by the use of such high-productive self-propelled and space-saving facilities of new generation as machines of ZEVS-1 model and portable charges of ZEP-15 type as well as the use of such environmentally friendly bulk trinitrotoluene-free emulsion explosives as Ukrainit-PP-2.
      Practical implications. Use of EEs in the process of mine blasting operations provides safety, high-quality rock breakage and fragmentation in the context of minimum toxicity of rock, breakage of rocks having any hardness and water content. Moreover, their use is economically efficient.
      Keywords: blasting operations, emulsion explosives, equipment, portable charger, charging machines, safety
      REFERENCES
Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Mode-ling of the Disjunctive Geological Fault Influence on the Exploitation Wells Stability During Underground Coal Gasification. Archives of Civil and Mechanical Engineering, 18(3).
https://doi.org/10.1016/j.acme.2018.01.012
Golik, V.I., Ismailov, T.T., Stradanchenko, S.G., & Luk’yanov, V.G. (2016). Okhrana iskusstvennykh massivov ot seysmicheskogo vozdeystviya pri polzemnoy dobyche rud. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov, 327(4), 6-15.
Gupta, I.D., & Trapathy, G.R. (2013). Comparison of Construction and Mining Blast with Specific Reference to Structural Safety. Indian Mining and Engineering Journal, 54(4), 13-17.
Jha, A.K., Jha, M.K., & Kumar, S. (2015). Instrument Based Blast Performance Evaluation. Journal of Mines, Metals and Fuels, 63(7), 190-192.
Jonson, D. (2012). Controlling Shock Waves and Vibrations During Large and Intensive Blasting Operations Under Stockholm City. Tunneling in Rock by Drilling and Blas-ting, 49-58.
https://doi.org/10.1201/b13762-9
Kanchibotla, S.S. (2003). Optimum Blasting? Is it Minimum Cost Per Broken Rock or Maximum Value Per Broken Rock? Fragblast, 7(1), 35-48.
https://doi.org/10.1076/frag.7.1.35.14059
Khademian, A., & Bagherpour, R. (2017). Environmentally Sustainable Mining through Proper Selection of Explosives in Blasting Operation. Environmental Earth Sciences, 76(4).
https://doi.org/10.1007/s12665-017-6483-2
Komashchenko, V.I. (2016). Razrabotka vzryvnoy tekhnologii, snizhayushchey vrednoe vozdeystvie na okruzhayushchuyu sredu. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o Zemle, (1), 34-43.
Komashchenko, V.I., Vorob’yev, E.D., & Belin, V.A. (2017). Perspektivy razvitiya promyshlennykh vzryvchatykh veshchestv i primeneniya sovremennykh tekhnologiy vzryvnykh rabot s uchetom ekologicheskoy bezopasnosti. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o Zemle, (3), 157-168.
Kovalenko, I.L., & Kuprin, V.P. (2010). Vzaimodeystvie emu-l’sionnykh vzryvchatykh veshchestv s sul’fidnymi mine-ralami. Vzryvnoe Delo, 103(60), 154-170.
Kozan, E., & Liu, S.Q. (2016). An Operational-Level Multi-Stage Mine Production Timetabling Model for Optimally Synchronising Drilling, Blasting and Excavating Operations. International Journal of Mining, Reclamation and Environment, 31(7), 457-474.
https://doi.org/10.1080/17480930.2016.1160818
Kutuzov, B.N., & Belin, V.A. (2011). Proektirovanie i organizatsiya vzryvnykh rabot. Moskva: Moskovskiy gosudarstvennyy gornyy universitet.
Lyashenko, V.I., & Golik, V.I. (2017). Nauchnoe i konstruktor-sko-tekhnologicheskoe soprovozhdenie razvitiya uranovogo proizvodstva. Dostizheniya i zadachi. Gornyy Informatsionno-Analiticheskiy Byulleten’, (7), 137-152.
Lyashenko, V.I., & Kislyy, P.A. (2014). Povyshenie seysmicheskoy bezopasnosti podzemnoy razrabotki slozhnostruktur-nykh mestorozhdeniy. Tsvetnaya Metallurgiya, (4), 21-31.
Lyashenko, V.I., Nebogin, V.Z., & Shkarin, V.V. (2016). Po-vyshenie effektivnosti proizvodstva vzryvnykh rabot na shakhtakh Ukrainy. Marksheyderiya i Nedropol’zovanie, 3(83), 14-21.
Manolas, F., & Arusu, T. (2012). Blasting Works in Urban Areas – A Singapore Case Study. Tunneling in Rock by Drilling and Blasting, 23-30.
https://doi.org/10.1201/b13762-5
Navalkar, C.B. (2001). Drill & Blast Optimization in India an Economic & Environmental Review. Proceedings of the Annual Conference on Explosives and Blasting Technique, (1), 2007-2013.
Nikulova, V.G., & Timonina, T.V. (2010). Elektrodetonator po-vyshennoy bezopasnosti s zadannymi parametrami. Vzryvnoe Delo, 103(60), 241-255.
Podkopaiev, S., Iordanov, I., & Chepiha, D. (2017). Stability of the Coal Seam Roof During the Sudden Collapse of Lateral Rocks. Mining of Mineral Deposits, 11(3), 101-110.
https://doi.org/10.15407/mining11.03.101
Sivenkov, V.I., Ilyakhin, S.V., & Maslov, I.Yu. (2013). Emul’-sionnye vzryvchatye veshchestva i neelektricheskie sistemy initsiirovaniya. Moskva: Shchit-M.
Sorokin, A.G., Bezrodnyy, S.A., Borovkova, E.V., & Korsu-novskaya, T.N. (2011). VostGOK. Istoriya i sovremennost’ v fotodokumentakh. Dnipro: Status.
Trushko, V.L., Protosenya, A.G., & Ochkurov, V.I. (2016). Prediction of the Geomechanically Safe Parameters of the Stopes during the Rich Iron Ores Development under the Complex Mining and Geological Conditions. Internatio-nal Journal of Applied Engineering Research, 11(22), 11095-11103.
Vorob’yev, A.E., Lyashenko, V.I., & Nebogin, V.Z. (2015). Povyshenie bezopasnosti proizvodstva vzryvnykh rabot s pomoshch’yu emul’sionnykh VV na shakhtakh. In Resursovosproizvodyashchie, Malootkhodnye i Prirodookhrannye Tekhnologii Osvoeniya Nedr (pp. 105-107). Moskva: RUDN.
Wojtecki, Ł., Mendecki, M.J., & Zuberek, W.M. (2017). Determination of Destress Blasting Effectiveness Using Seismic Source Parameters. Rock Mechanics and Rock Engineering, 50(12), 3233-3244.
https://doi.org/10.1007/s00603-017-1297-9
Yang, W., & Li, H.P. (2014). Study on Control Technology of Slope in Mountainous Areas of Southwest China under Complex Geological Conditions. Applied Mechanics and Materials, (580-583), 971-976.
https://doi.org/10.4028/www.scientific.net/amm.580-583.971