Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Developing information systems of operation schedules to stabilze the grade of a mineral

М. Zarubin1, L. Statsenko2, V. Zarubina3, E. Fionin4

1Department of Automatisation, Information System and Safety, Rudny Industrial Institute, Rudny, Republic of Kazakhstan

2OInstitute for Mining and Energy Resources, University of Adelaide, Adelaide, Australia

3Department of Economic and Management, Rudny Industrial Institute, Rudny, Republic of Kazakhstan

4Department of Metallurgy and Mining, Rudny Industrial Institute, Rudny, Republic of Kazakhstan


Min. miner. depos. 2017, 11(4):59-70


https://doi.org/10.15407/mining11.04.059

Full text (PDF)


      ABSTRACT

      Purpose. To develop information technology making it possible to obtain ore flow with the required grade parameters in the context of open-pit mining owing to the implementation of methods and algorithms optimizing operation schedules for ore mass mining and moving.

      Methods. The process involved both traditional (i.e. analysis of scientific and patent sources; analytical methods to study parameters of ore flow; analysis of experience and operations of open pits; and passive experiment as well as statistic processing of data) and new forms of scientific research (i.e. simulation modeling with the help of the deve-loped program models).

      Findings. Results of the studies made it possible to solve a significant scientific problem concerning stabilization of ore grades in an open pit; to develop new mathematical models concerning the effect of operational parameters of production units, intraopen-pit stabilization warehouses, and traffic flows; to develop new algorithms on the basis of mathematical models; and to implement program packages to optimize operations of stope sites, stope-to-stope traffic flows, and stabilization warehouses.

      Originality. The carried-out studies have helped solve significant scientific problem concerning ore grade stabilization in an open pit; new mathematical models concerning the effect of operational parameters of production units, intraopen-pit stabilization warehouses, and traffic flows have been developed; new algorithms on the basis of mathe-matical models have been obtained; and program packages to optimize operations of stope sites, stope-to-stope traffic flows, and stabilization warehouses have been implemented. The information system use made it possible to improve the accuracy of determination of boundaries between selective mining and complete mining, to optimize both design and parameters of warehouses, and to systemize determination of a mineral disposal by means of transport means.

      Practical implications. The program support helps improve the grade of ore flow delivered to preparation complex from open pits at the expense of optimization of operation schedule and technological development in the context of formation of blending piles. That makes it possible to achieve economic effect owing to the extraction of the commercial mineral and decrease in expenditures connected with preparation stage.

      Keywords:information system, stabilization of a mineral, selective mining, organization of cargo flows, stabilization warehouse


      REFERENCES

Bastan, P.P., Azbel’, I.I., & Klyuchkin, E.I. (1979). Teoriya i praktika usredneniya rud. Moskva: Nedra.

Beretta, F.S., Costa, J.F.C.L., & Koppe, J.C. (2010). Reducing Coal Quality Attributes Variability Using Properly Designed Blending Piles Helped by Geostatistical Simulation. International Journal of Coal Geology, 84(2), 83-93.
https://doi.org/10.1016/j.coal.2010.08.007

Dovzhenok, A.S. (2002). Razvitie teorii i metodov upravleniya avtotransportnoy sistemoy gornodobyvayushchego predpriyatiya. Ph.D. Chelyabinsk: NTTs-NIIOGR.

Galiev, S.Zh. (1997). Optimizatsiya parametrov gorno-trans-portnykh sistem kar’yerov na osnove imitatsionnogo mo-delirovaniya. Ph.D. Almaty: IGD MN AN Respubliki Kazakhstan.

Gy, P.M. (1981). A New Theory of Bed-Blending Derived from the Theory of Sampling – Development and Full-Scale Experimental Check. International Journal of Mine-ral Processing, 8(3), 201-238.
https://doi.org/10.1016/0301-7516(81)90013-2

Huang, Q., & Chen, J. (2011). Research on Dynamic Mine Ore Blending Optimization Based on Particle Swarm Optimization in Mining Enterprises. Computer Engineering, (8), 50-61.

Kumral, M. (2005). Quadratic Programming for the Multi-Variable Pre-Homogenization and Blending Problem. Journal of South African Institute of Mining and Metallurgy, (105), 322-324.

Mosinets, V.N., & Rubtsov, S.K. (2001). Tekhnologiya Vzry-vaniya Rudnykh Ustupov s Sokhraneniem Geologicheskoy Struktury. Gornyy Zhurnal, (12), 33-37.

Muller, K. (2010). Stacking, Blending and Reclaiming Effects. Mechanical Technology, (11), 14-18.

Petersen, I.F. (2004). Blending in Circular and Longitudinal Mixing Piles. Chemometrics and Intelligent Laboratory Systems, 74(1), 135-141.
https://doi.org/10.1016/j.chemolab.2004.03.018

Robinson, G.K. (2004). How Much Would a Blending Stockpile Reduce Variation? Chemometrics and Intelligent Laboratory Systems, 74(1), 121-133.
https://doi.org/10.1016/j.chemolab.2004.03.010

Shemetov, P.A., & Kolomnikov, S.S. (2002). Razvitie vyemochno-transportnogo kompleksa kar’yera “Muruntau”. Gornyy Zhurnal, (spetsial’nyy vypusk), 98-100.

Shevelev, V.A. (2014). Opredelenie parametrov priustupnykh buferno-usrednitel’nykh skladov s uchetom parametrov tekhnologicheskogo oborudovaniya. Gornyy Informatsionno-Analiticheskiy Byulleten’, (3), 413-416.

Tarasov, P.I. (2013). Obosnovanie putey razvitiya transport-tnykh sredstv dlya osvoeniya severnykh territoriy Rossii. IGD UrO RAN, 137-151.

Tsekhovoy, A.F., Zhusupov, K.K., & Statsenko, L.G. (2009). Planirovanie i operativnoe upravlenie na otkrytykh gornykh rabotakh s uchetom strategii razvitiya otraslevogo kompleksa. Gornyy Zhurnal, (11), 42-45.

Vashlaev, I.I., & Selivanov, A.V. (2004). Opredelenie minimal’nogo ob’’ema rudy v usrednitel’nom sklade v zavisimosti ot velichiny dopustimogo otkloneniya parametra kachestva. Gornyy Informatsionno-Analiticheskiy Byulle-ten’, (11), 190-192.

Vasil’yev, S.B. (2007). Matematicheskaya model’ usredneniya uglya metodom prodol’nogo sdviga. Gornyy Zhurnal, (3), 82-85.

Yakovlev, V.L., Tarasov, P.I., & Zhuravlev, A.G. (2011). Istoriya i perspektivy trolleyvoznogo transporta. Novye spetsializirovannye vidy transporta dlya gornykh rabot. Ekaterinburg: UrO RAN.

Yakubovskiy, M.M., & Yakubovskiy, M.M. (2010). Sovre-mennyy peregruzochnyy punkt pri kombinirovannom avtomobil’no-zheleznodorozhnom transporte. Zapiski Gornogo Instituta, (186), 90-93.

Zarubin, M.Yu., Fionin, E.A., & Danilets, E.V. (2013). Analiz vliyaniya tekhnologicheskikh skhem vyemki gornoy massy na pokazateli kachestva pri otkrytoy razrabotke mestorozhdeniy poleznogo iskopaemogo. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta imeni G.I. Nosova, 3(43), 5-9.

Zarubin, M.Yu., & Zarubina, V.R. (2014). Optimizatsiya rudopotoka kar’yera: modul’ “Transport”. In Nauka, obrazovanie i proizvodstvo – vedushchie faktory strategii “Kazakhstan-2050”. Karaganda: Karagandinskiy gosudarstvennyy tekhnicheskiy universitet.

Лицензия Creative Commons