Physical and chemical conditions for the formation of mercuric gold within Au-Hg deposits (thermodynamic modeling)
L. Gushchina,1, E. Naumov1,2
1Laboratory of Ore-Forming Systems, V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
2Ore Deposits Department, Novosibirsk State University, Novosibirsk, Russian Federation
Min. miner. depos. 2017, 11(4):46-58
https://doi.org/10.15407/mining11.04.046
Full text (PDF)
      ABSTRACT
      Purpose. To carry out computer thermodynamic modeling of gold and mercury behaviour in the context of their common occurrence and formation of mercuric gold in hydrothermal solutions Cl– – HCO3– – Na+ and Cl– – Na+ – Ca2+ with the use of “Chiller” programme.
      Methods. Physical and chemical parameters of ore-forming solutions have been used as the initial data for the modeling. They were obtained relying upon the analysis of fluid ore inclusions in the neighbourhood of surface Au-Hg deposits; fluid inclusion studies (i.e. thermometry, cryometry, RS-spectroscopy, ICP-MS-LA) were applied. High metal-bearing hydroterms according to Au (I) within 200 – 100°С temperature interval is determined by means of hyperalkalinity of hydrothermal solutions as well as stability of dihydrosulphide (i.e. Au(HS)2–) complex under the conditions providing transport of gold to low-temperature (150 – 100°С) ore deposition typical for Au-Hg deposits.
      Findings. Relying upon the previously obtained data of fluid inclusion studies and thermodynamic modeling, basic geological and geochemical conditions of occurrence have been identified; physical and chemical factors defining gold deposits with different mercury content have been determined.
      Originality. Computer thermodynamic modeling of common Au and Hg behaviour in hydrothermal process made it possible to demonstrate specifics of physical and chemical parameters of formation of complex gold-mercury ores. For the first time, uniqueness of free gold composition for various types of Au-Hg deposits has been determined on the basis of proper data and data by scientific sources. The results, obtained in the process of the studies, made it possible to expand substantially available concepts of their genesis to be important for the development of genetic models of ore-forming systems of Au-Hg deposits.
      Practical implications. Composition of gold and its mercury content may be used practically in the process of prospecting activities as a criterion to determine the occurrence of one of prospective industrial types of gold ores (Carlin-type) – finely disseminated gold and mercury ore grade mineralization – as well as formation depth and estimation of erosion level of ore bodies.
      Keywords:gold and mercury deposits, fluid inclusions, composition of hydrothermal solutions, thermodynamic models
      REFERENCES
Belevantsev, V.I., Gushchina, L.V., & Obolenskiy, A.A. (1982). Gidrotermal’nye rastvory i migratsiya rtuti. Gidrotermal’noe nizkotemperaturnoe rudoobrazovanie i metasomatoz. Novosibirsk: Nauka.
Borisenko, A.S. (1977). Izuchenie rastvorov gazovo-zhidkikh vklyucheniy v mineralakh metodom kriometrii. Geologiya i Geofizika, (8), 16-27.
Borisenko, A.S. (1982). Analiz solevogo sostava rastvorov v gazovo-zhidkikh vklyucheniy v mineralakh metodom termo-barogeokhimiipri poiskakh i izuchenii rudnykh mestorozhdeniy. Moskva: Nedra.
Borisenko, A.S., Naumov, E.A., Pavlova, G.G., & Zadorozhny, M.V. (2004). Gold-Mercury Deposits of the Central Asia: Types of Deposits, Regularities of Localization, Genetic Models. Journal of Geology, (23), 42-52.
Borovikov, A.A., Gushchina, L.V., & Borisenko, A.S. (2002). Opredelenie khloridov zheleza (II, III) i tsinka v rastvorakh flyuidnykh vklyucheniy pri kriometricheskikh issledovaniyakh. Geokhimiya, (1), 70-79.
Bychkov, A.Yu. (2001). Gazovyy transport kak faktor formirovaniya rudnoy spetsializatsii gidrotermal’nykh mestorozhdeniy. XIV Rossiyskoe Soveshchanie po Eksperimental’noy Mineralogii, 156.
Fortuna, J., Kesler, S., & Stenger, D.P. (2003). Source of Iron for Sulfidation and Gold Deposition, Twin Creeks Carlin-Type Deposit, Nevada. Economic Geology, 98(6), 1213-1224.
https://doi.org/10.2113/98.6.1213
Fein, J.B., & Williams-Jones, A.E. (1997). The Role of Mercury-Organic Interactions in the Hydrothermal Transport of Mercury. Economic Geology, 92(1), 20-28.
https://doi.org/10.2113/gsecongeo.92.1.20
Harris, D.C. (1989). The Mineralogy and Geochemistry of the Hemlo Gold Deposit. Ontario: Energy Mines and Resources Canada.
https://doi.org/10.4095/127237
Hofstra, A.H., & Cline, J.S. (2000). Characteristics and Models for Carlin-Type Gold Deposits. Reviews in Economic Geo-logy, 13(2), 163-220.
Johnson, J.W., Oelkers, E.H., & Helgeson, H.C. (1992). SUPCRT’92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 Bars and 0 to 1000°C. Computers & Geosciences, 18(7), 899-947.
https://doi.org/10.1016/0098-3004(92)90029-q
Kholland, G.D. (1970). Zhil’nye mineraly v gidrotermal’nykh mestorozhdeniyakh. Geokhimiya Rudnykh Mestorozhdeniy, 325-366.
Kochetkov, A.Yu., Gatinskiy, Yu.G., Apshteyn, Yu.A., & Chan Van, Chi. (1997). Zoloto-sur’myanaya formatsiya v Yugo-vostochnoy Azii. Doklady Akademii Nauk, (2), 226-229.
Kolonin, G.R., & Ptitsyn, A.B. (1974). Termodinamicheskiy analiz usloviy gidrotermal’nogo rudoobrazovaniya. Novosibirsk: Nauka.
Kovalev, K.R., Kalinin, Y.A., Naumov, E.A., Pirajno, F., & Borisenko, A.S. (2009). A Mineralogical Study of the Suzdal Sediment-Hosted Gold Deposit, Eastern Kazakhstan: Implications for Ore Genesis. Ore Geology Reviews, 35(2), 186-205.
https://doi.org/10.1016/j.oregeorev.2008.11.007
Naumov, E.A., Borovikov, A.A., Borisenko, A.S., Zadorozhnyy, M.V., & Murzin, V.V. (2002). Fiziko-khimicheskie usloviya formirovaniya zolota-rtutnykh mestorozhdeniy. Geologiya i Geofizika, 43(12), 1055-1064.
Naumov, E.A. (2007). Tipy zoloto-rtutnoy mineralizatsii Al-tae-Sayanskoy skladchatoy oblasti i fiziko-khimicheskie usloviya ikh formirovaniya. Ph.D. Institute geologii i mineralogii Sibirskogo otdeleniya Rossiyskoy Akademii nauk.
Radtke, A.S. (1985). Geology of Carlin Gold Deposit. Nevada: US Government Printing Office.
Reed, H.M. (1982). Calculation of Multicomponent Chemical Equilibria and Reaction Processes Systems Involving Minerals, Gases and Aqueous Phase. Geochimica et Cosmochimica Acta, (46), 513-525.
https://doi.org/10.1016/0016-7037(82)90155-7
Reed, H.M. (1998). Calculation of Simultaneous Comical Equilibria in Aqueous-Mineral-Gas Systems and Application to Modeling Hydrothermal Process, Techniques in Hydrothermal Ore Deposits Geology. Reviews in Economic Geology, (10), 109-124.
Rui-Zhong, H., Wen-Chao, S., Xian-Wu, B., Guang-Zhi, T., & Hofstra, A.H. (2002). Geology and Geochemistry of Carlin-Type Gold Deposits in China. Mineralium Deposita, 37(3), 378-392.
https://doi.org/10.1007/s00126-001-0242-7
Stefánsson, A., & Seward, T.M. (2004). Gold (I) Complexing in Aqueous Sulphide Solutions to 500°C at 500 bar. Geochimica et Cosmochimica Acta, 68(20), 4121-4143.
https://doi.org/10.1016/j.gca.2004.04.006
Stepanov, V.A., & Moiseenko, V.G. (1993). Geologiya zolota, serebra i rtuti. Chast’ I. Zolotortutnye mestorozhdeniya. Vladivostok: Dal’nauka.
Sorokin, V.I. (1973). Rastvorimost’ rtuti v vode v intervale temperatur 300-500°C i davleniy 500-1000 atm. Doklady Akademii Nauk, 213(4), 852-855.
Sorokin, V.I., & Gruzdev, V.S. (1975). Rastvorimost’ rtuti v vode i problema perenosa metallov v gidrotermal’nykh usloviyakh v vide parov elementov. Eksperiment v Mineralogii i Petrografii, 133-149.
Sorokin, V.I., Alekhin, Yu.V., & Dadze, T.P. (1978). Rastvorimost’ rtuti v sistemakh Hg-H2O; Hg-S-(Cl)-H2O i formy ee sushchestvovaniya v sul’fidoobrazuyushchikh termal’nykh vodakh Kamchatki i o. Kunashir. Ocherki Fiziko-Khimicheskoy Petrologii, (8), 133-149.
Vasil’yev, V.I. (2004). Mineralogiya rtuti. Novosibirsk: SO RAN “Feya”.