Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Friction of flexible friction effect and general law on friction in operation of transport machines with flexible tie body

M. Filatiev1, A. Laguta2

1Mine Surveying, Geodesy and Geology Department, Donbas State Technical University, Lysychansk, Ukraine

2Queen’s University, Ontario, Canada


Min. miner. depos. 2017, 11(4):111-116


https://doi.org/10.15407/mining11.04.111

Full text (PDF)


      ABSTRACT

      Purpose. Experimental determination of angle changes of full displacement of rocks by removing the breakage face from the face entry in different mining and geological conditions.

      Methods. On the basis of experimental data on parameters of the earth’s surface subsidence and the breakage headings size the full displacement angles of undermined rocks are determined graphically.

      Findings. The angle changes of the earth’s surface maximal subsidence are determined from the ratio of breakage heading size and mining operations depth.

      Originality. The maximal earth’s surface subsidence values correspond to the minimal values of the displacement angles above the face entry.

      Practical implications. The obtained results make it possible to estimate the displacement zones possible boundaries of undermined rocks with their discontinuity.

      Keywords: angles, displacement, earth’s surface, flat bottom, trough, face entry, breakage face


      REFERENCES

Averin, G.A., Kir’yazev, P.N., & Dotsenko, O.G. (2010). Vliyanie sloistosti na osedanie zemnoy poverkhnosti. Ugol’ Ukrainy, (10), 34-35.

Babenko, E.V. (2009). Nastroyka modeli dlya modelirovaniya seysmicheskikh sobytiy tekhnologicheskoy prirody. Problemy Hіrs’koho Tysku, (17), 67-93.

Borzykh, A.F., & Gorovoy, E.P. (1999). Vliyanie shiriny vyrabotannogo prostranstva na aktivizatsiyu sdvizheniya uglenosnogo massiva. Ugol’ Ukrainy, (9), 26-30.

Demydov, M., Astafiev, D., & Kaminski, P. (2015). Specialties of Coal Seams Mining Under Conditions of Western Donbas. Mining of Mineral Deposits, 9(1), 113-116.
https://doi.org/10.15407/mining09.01.113

Filat’yev, M.V., Antoshchenko, N.I., Gasyuk, R.L., & Pyzhov, S.V. (2015). Eksperimental’noe opredelenie uglov maksimal’-nogo osedaniya podrabotannykh ochistnymi vyrabotkami porod. Ugol’ Ukrainy, (11), 3-6.

Filatiev, M.V. (2017a). Analytical Determination of Co-ordinates of Distinguished Points of the Earth Surface Depression Over Broken Workings. Naukovyi Visnyk Natsio-nalnoho Hirnychoho Universytetu, (1), 27-33.

Filatiev, M.V. (2017 b). Determination of Cross-Correlation Dependences Between the Parameters of Swallies of the Earth Surface and the Movement of Underworked Rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 43-48.

Ghabraie, B., Ren, G., Barbato, J., & Smith, J.V. (2017). A Predictive Methodology for Multi-Seam Mining Induced Subsidence. International Journal of Rock Mechanics and Mining Sciences, (93), 280-294.
https://doi.org/10.1016/j.ijrmms.2017.02.003

Iofis, M.A., & Shmelev, A.I. (1985). Inzhenernaya geome-khanika pri podzemnykh razrabotkakh. Moskva: Nedra.

Ivanova, A., & Zaitseva, L. (2004). Studies of the Coal Facies in Western Ukraine (the Lvov-Volyn Basin). International Journal of Coal Geology, 58(1-2), 67-73.
https://doi.org/10.1201/b17547-43

Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The Influence of Fine Particles of Binding Materials on the Strength Properties of Hardening Backfill. Mining of Mineral Deposits, 45-48.
https://doi.org/10.1201/b16354-10

Larchenko, V.G. (1998). Vliyanie podzemnoy razrabotki ugol’-nykh plastov na sostoyanie zemnoy poverkhnosti. Vestnik Mezhdunarodnoy Akademii Nauk Ekologii i Bezopasnosti, 4(12), 39-41.

Minpalyvenerho Ukrainy. (2004). Pravyla pidrobky budivel, sporud i pryrodnykh ob’iektiv pry vydobuvanni vuhillia pidzemnymy sposobamy. Kyiv: Haluzevyi standart Ukrainy.

Mohammed, M., Wan, L., & Wei, Z. (2015). Slope Stability Analysis of Southern Slope of Chengmenshan Copper Mine, China. International Journal of Mining Science and Technology, 25(2), 171-175.
https://doi.org/10.1016/j.ijmst.2015.02.002

Nazarenko, V.A., & Yoshchenko, N.V. (2011). Zakonomernosti razvitiya maksimal’nikh osedaniy i naklonov poverkhnosti v mul’de sdvizheniya. Dnepropetrovsk: Natsyonal’nyy gor-nyy universitet.

Petlovanyi, M. (2016). Influence of Configuration Chambers on the Formation of Stress in Multi-Modulus Mass. Mining of Mineral Deposits, 10(2), 48-54.
https://doi.org/10.15407/mining10.02.048

Russkikh, V., Demchenko, Y., Salli, S., & Shevchenko, O. (2013). New Technical Solutions During Mining C5 Coal Seam Under Complex Hydro-Geological Conditions of Western Donbass. Mining of Mineral Deposits, 257-260.
https://doi.org/10.1201/b16354-48

Salehnia, F., Collin, F., & Charlier, R. (2016). On the Variable Dilatancy Angle in Rocks Around Underground Galleries. Rock Mechanics and Rock Engineering, 50(3), 587-601.
https://doi.org/10.1007/s00603-016-1126-6

Salmi, E.F., Nazem, M., & Karakus, M. (2017). The Effect of Rock Mass Gradual Deterioration on the Mechanism of Post-Mining Subsidence Over Shallow Abandoned Coal Mines. International Journal of Rock Mechanics and Mining Sciences, (91), 59-71.
https://doi.org/10.1016/j.ijrmms.2016.11.012

Suchowerska Iwanec, A.M., Carter, J.P., & Hambleton, J.P. (2016). Geomechanics of Subsidence Above Single and Multi-Seam Coal Mining. Journal of Rock Mechanics and Geotechnical Engineering, 8(3), 304-313.
https://doi.org/10.1016/j.jrmge.2015.11.007

Yagunov, A.S. (2007). Issledovanie vliyaniya vysokikh skorostey podviganiya ochistnogo zaboya na kharakter i parametry protsessa sdvizheniya poverkhnosti. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugol’noy Promyshlennosti, (2), 36-43.

Лицензия Creative Commons