Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Hydro-thermodynamic model of deep-water hydraulic lift of 3-phase fluid considering heat-mass-exchange processes

V. Samusia1, V. Kyrychenko1, Ye. Kyrychenko1, S. Ilina1, А. Antonenko1

1Mining Mechanics Department, National Mining University, Dnipro, Ukraine


Min. miner. depos. 2017, 11(2):96-102


https://doi.org/10.15407/mining11.02.096

Full text (PDF)


      ABSTRACT

      Purpose.To justify theoretical dependences of the main flow parameters of 3-phase streams for modeling the process of hydraulic hoisting of polymetallic nodules in the flow section of the deep-water air-lift for various structures of heterogeneous fluid flow.

      Methods. Theoretical studies allowed to establish dependences of the main flow parameters of 3-phase streams transporting solid material in a vertical pipeline.

      Findings. We obtained dependences describing the main characteristics of 3-phase flows in vertical pipelines and calculation formulas for determining the flow parameters of polymetallic nodules hydraulic hoisting for different flow patterns of the fluid. An approach to the development of a mathematical treatment of the mechanism underlying solid materials transportation in the carrying fluid is proposed.

      Originality.A thermohydrodynamic model of the rising pipe of the deep-water air-lift hydraulic hoisting is developed taking into account the heat-mass exchange processes with different structures of the 3-phase fluid.

      Practical implications. We developed and prepared for trial operation the software simulating transitional operation modes of deep-water hydraulic lifts transporting polymetallic nodules.

      Keywords: hydraulic hoisting, deep-water, heat-and-mass-exchange, flow pattern, hydraulic fluid


      REFERENCES

Andreev, S.I., Verzhansky, A.P., & Cherkashev, G.A. (2017). The World Ocean: The lessons of History and the Modern Challenges. Gornyi Zhurnal, (2), 4-11.
https://doi.org/10.5040/9781474295741.ch-005

Geyer, V., & Kostanda, V. (1965). Universal’nye kharakteristiki pod’emnoy truby erlifta. Gidravlicheskaya dobycha uglya, (4), 30-35.

Ghidaoui, M.S., Zhao, M., McInnis, D.A., & Axworthy, D.H. (2005). A Review of Water Hammer Theory and Practice. Applied Mechanics Reviews, 58(1), 49-76.
https://doi.org/10.1115/1.1828050

Goman, O.G., Kirichenko, V.Ye., & Romanyukov, A.V. (2013). Aero-Hydro-Dynamic Experimental Research of the Properties of the Deepwater Hydraulic Hoist Pipeline Units. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu (1), 49-56.

Kononenko, A. (2005). Model’ rabochego protsessa erlifta s emul’sionnoy strukturoy vodovozdushnogo potoka. Naukovі pratsі Donetskoho natsіonalnoho tekhnіchnoho unіversytetu, (101), 58-67.

Kirichenko, Ye.A., Kirichenko, V.Ye., Shvorak, V.G., Yevteyev, V.V., & Khvorostyanoy, N.N. (2012). Methodical Maintenance of Automatic Way of Transient Regimes Control for Deep-Water Airlift Hydraulic Hoisting. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 49-58.

Kyrychenko, E.A., Kyrychenko, V.E., & Evteev, V.V. (2013). Teoriya i algoritmy rascheta snaryadnogo techeniya v erlifte. Dnepropetrovsk: Natsyonal’nyy gornyy universitet.

Kyrychenko, V., Kyrychenko, E., Samusya, V., & Antonenko, A. (2014). Concerning CAE Systems Development of Hydraulic Hoists Within Ship Mining Complexes. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 451-455.
https://doi.org/10.1201/b17547-77

Kyrychenko, E., Samusya, V., Kyrychenko, V., & Antonenko, A. (2015). Thermodynamics of Multiphase Flows in Relation to The Calculation of Deep-Water Hydraulic Hoisting. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 305-311.
https://doi.org/10.1201/b19901-54

Лицензия Creative Commons