Dependence between the height of rocks displacement zone with fissure and the size of stopes
M. Antoshchenko 1, M. Filatiev2, O. Dubovyk3
1Donbas State Technical University, Lysychansk, Ukraine
2Department of Labour Protection, Donbas State Technical University, Lysychansk, Ukraine
3State Enterprise “Coal Company “Krasnolymanska”, Rodynske, Ukraine
Min. miner. depos. 2016, 10(4):44-49
https://doi.org/10.15407/mining10.04.044
Full text (PDF)
      ABSTRACT
      Purpose. To establish dependences describing changes in the height of rocks displacement zone with fissure in the course of stope development using experimental data about the stopes’ dimensions and parameters of the land surface displacement troughs.
      Methods. On the basis of statistical processing of experimental data to establish dependence of the upper boundary of rocks displacement zone with fissure on values of the maximum land surface subsidence and the stopes’ dimensions.
      Findings. The conducted research allowed to determine that the maximum height to which the underworked rocks zone with fissure spreads is reached when the stoping face is located at the distance equal to lava length.
      Originality. Dependences for calculating the upper boundary of rocks displacement zone with fissure were derived from the values of the underworked rocks displacement angles determined by the maximum land surface subsidence and the stopes’ dimensions.
      Practical implications.Departing from the relevant theoretical provisions, experimental data and the conducted research, we obtained an empirical dependence for calculating the height to which the underworked rocks zone with fissure spreads.
      Keywords:citedisplacement of rocks, continuity, angles of displacement, stopes, scheme, subsidence of the land surface
      REFERENCES
Babenko, E. (2009). Nastroyka modeli dlya modelirovaniya seysmicheskikh sobytiy tekhnogennoy prirody. Problemy hirskoho tysku, (17), 67-93.
Bartlett, P.J. (2010). Considerations in Planning and Implementing Massive Underground Mines at Depth. Mining technology, 119(3), 168-174.
https://doi.org/10.1179/174328610x12820409992417
Cho, N., Martin, C.D., & Sego, D.C. (2008). Development of a Shear Zone in Brittle Rock Subjected to Direct Shear. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1335-1346.
https://doi.org/10.1016/j.ijrmms.2008.01.019
Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016). Substantiating Parameters of Stratification Cavities Formation in the Roof Rocks during Underground Coal Gasification. Mining of Mineral Deposits, 10(1), 16-24.
https://doi.org/10.15407/mining10.01.016
Filat’yev, M., Antoshchenko, N., Pyzhov, S., & Dubovik, A. (2016). Opredelenie zon sdvizheniya podrabotannykh porod s razryvom sploshnosti. Ugol’ Ukrainy, (3), 9-16.
Han, H.L., Hu, N.L., & Cui, B. (2011). Dynamic Modeling of Surface Subsidence Induced by Underground Mining. Advanced Materials Research, (382), 323-327.
https://doi.org/10.4028/www.scientific.net/amr.382.323
Hummel, M., Hummelova, I., Koudelkova, J., & Cerna, K. (2015). Mining of Protection Pillars Without Subsidence. Journal of Mining Science, 51(2), 335-341.
https://doi.org/10.1134/s1062739115020179
Kowalski, A., & Jędrzejec, E. (2015). Influence of Subsidence Fluctuation on the Determination of Mining Area Curvatures. Archives of Mining Sciences, 60(2), 487-505.
https://doi.org/10.1515/amsc-2015-0032
Kozlovskiy, B. (1975). Prognozirovanie metanovoy opasnosti v ugol’nykh shakhtakh. Moskva: Nedra.
Larchenko, V. (1998). Vliyanie podzemnoy razrabotki ugol’nykh plastov na sostoyanie zemnoy poverkhnosti. Vestnik MANEB, 4(12), 39-41.
Nazarenko, V., & Yoshchenko, N. (2011). Zakonomernosti razvitiya maksimal’nykh osedaniy i naklonov poverkhnosti v mul’de sdvizheniya. Dnipropetrovsk: Natsionalnyi hirnychyi universytet.
Pravyla pidrobky budivel, sporud i pryrodnykh ob’iektiv pry vydobuvanni vuhillia pidzemnym sposobom. (2004). Kyiv: Minpalyvenerho Ukrainy.
Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht. (1975). Moskva: Nedra.
Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht. (1994). Kyiv: Osnova.
Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A., & Matsui, K. (2015). Surface Subsidence due to Underground Mining Operation under Weak Geological Condition in Indonesia. Journal of Rock Mechanics and Geotechnical Engineering, 7(3), 337-344.
https://doi.org/10.1016/j.jrmge.2015.01.007