Influence of configuration chambers on the formation of stress in multi-modulus mass
M. Petlovanyi1
1 Underground Mining Department, National Mining University, Dnipropetrovsk, Ukraine
Min. miner. depos. 2016, 10(2):48-54
https://doi.org/10.15407/mining10.02.048
Full text (PDF)
      ABSTRACT
      Purpose.Detecting unstable areas in the filling mass taking into account configuration of the adjacent mineable chambers to improve its formation.
      Methods. The research into stress state of multi-modulus mass consisting of ore, rocks and filling was conducted using Solid-Works 2011 software with the full compliance of their physical and mechanical properties.
      Findings. Computer simulation allowed to reveal unstable areas in the filling mass of the first stage chamber under the influence of the development of the second stage chamber. It was found that the vertical stress component forms an area of compressive stresses in the filling mass of the first stage chamber at the junction of its exposure to the roof of filling chamber with dimensions: depth of the mass – up to 50 m, vertical outcrop – 9.8 m, the maximum value of stress reaching 89 MPa. The horizontal stress component also forms an area of tensile stress, but with a lower value of 65 MPa. The horizontal stress component generates in the filling mass of the first stage chambers the area of tensile stresses on the substage level 775 – 810 m with dimensions: depth of the mass – up to 7 m, vertical exposure – 10 m, and the maximum stress value – up to 4 MPa.
      Originality. Analytical assessment of the filling mass stability allowed to conclude that: at the junction of its exposure to the roof of filling chamber, the compressive stress exceeds the strength of filling mass 1.8 times, in the center of filling mass on the outcrop, the tensile stress exceeds the strength of filling 1.3 times. Vertical stresses exceed horizontal stresses 1.35 times in the areas of filling destruction.
      Practical implications. The obtained findings related to the stress state of the filling mass can be used in issuing passports for stopes in choosing the filling mode and composition of the filling mixture.
      Keywords: stress state, strength, filling mass, chamber, chamber configuration
      REFERENCES
Boguslavskiy, E.I., & Minaev, D.Yu. (2005). Tekhnologiya voskhodyashchey otrabotki mestorozhdeniy na bol’shikh glubinakh. Gornyy informatsionno-analiticheskiy byulleten’, (2), 161-165.
Chetverik, M.S. (2012) Perspektivnye napravleniya dobychi rud v glubokikh kar’yerakh i shakhtakh Krivbassa.
Geotekhnichna mekhanika, (104), 51-60.
Chistyakov, E.P., Kulish, S.A., Moshinskiy, V.I., & Zubko, A.N. (2011). Instruktsiya po opredeleniyu parametrov ochistnoy vyemki pri sistemakh razrabotki s tverdeyushchey zakladkoy na zaporozhskom zhelezorudnom kombinate. Kryvyi Rih: GP “NIGRI”.
Golik, V.I., Gabaraev, O.Z., & Polukhin, O.N. (2014). Utilizatsiya otkhodov dolomita v gornom proizvodstve. Sukhie stroitel’nye smesi, (5), 14-16.
Kalinichenko, V.A. (2006). Issledovaniya napryazhenno-defor-mirovannogo sostoyaniya kombinirovannykh iskusstvennykh massivov. Stalyi rozvytok hirnycho-metalurhiinoi promyslovosti, 155-156.
Kaplenko, Yu.P., & Tsarikovskiy, V.V. (2005). Vliyanie nap-ryazhennogo sostoyaniya gornogo massiva i gorno-geolo-gicheskikh usloviy na parametry obnazheniy i formu ochistnykh kamer. Razrabotka rudnykh mestorozhdeniy, (88), 11-24.
Khomenko, O., Kononenko, M., & Netecha, M. (2016). Industrial research into massif zonal fragmentation around mine workings. Mining of Mineral Deposits, 10(1), 50-56.
https://doi.org/10.15407/mining10.01.050
Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 241-245.
https://doi.org/10.1201/b17547-43
Kononenko, M.M. (2010). Doslidzhennia napruzheno-deformo-vanoho stanu masyvu navkolo ochysnykh kamer. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 51-53.
Kunanbaev N.S., Zelentsov, S.N., & Makarov, A.B. (2001). Issledovanie prochnostnykh i deformatsionnykh svoystv zakladochnogo massiva. Gornyy zhurnal, (5), 36-38.
Kuz’menko, A.M., & Usatyy, V.V. (2010). Modelirovanie ustoychivosti formy vysokikh ochistnykh kamer pri sistemakh razrabotki zhelezorudnykh mestorozhdeniy s tverde-yushchey zakladkoy. In Shkola pidzemnoi rozrobky (pp. 30-38). Dnipropetrovsk: Natsionalnyi hirnychyi universytet.
Kuz’menko, A.M., & Petlevanyy, M.V. (2014). Vliyanie struk-tury gornogo massiva i poryadka otrabotki kamernykh zapasov na razubozhivanie rudy. Heotekhnichna Mekhanika, (118), 37-45.
Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Mining of Mineral Deposits, 45-48.
https://doi.org/10.1201/b16354-10
Russkikh, V., Yavors’kyy, A., Zubko, S., & Chistyakov, Y. (2013). Study of rock geomechanical processes while mining two-level interchamber pillars. Mining of Mineral Deposits, 149-152.
https://doi.org/10.1201/b16354-26
Tiwari, R., & Rao, K. (2004). Physical modeling of a rock mass under a true triaxial stress state. International Journal of Rock Mechanics and Mining Sciences, (41), 396-401.
https://doi.org/10.1016/j.ijrmms.2004.03.073
Volkov, Yu.V., Sokolov, I.V., & Smirnov, A.A. (2009). Opredelenie effektivnogo sootnosheniya pokazateley poter’ i razubozhivaniya dlya usloviy Gayskogo podzemnogo rudnika. Gornyy informatsionno-analiticheskiy byulleten’, (1), 380-384.