Development of dynamic model of braking gear involving frictional contact increment
Koptovets O.M1
1National Mining University, Dnipropetrovsk, Ukraine
Min. miner. depos. 2014, 8(3):387-392
https://doi.org/10.15407/mining08.03.387
Full text (PDF)
      ABSTRACT
      Dynamic brake model uses vibratory system with two degrees of freedom is developed. A wheel turns round with preset speed, and effect of brake power on the wheel speed is not involved. Systems with one degree of freedom set a limit to analytical research; that’s why it is vital to develop computational algorithm for computer simulation as well as analysis of oscillating processes with friction using computational experiment.
      REFERENCES
Spravochnik po tribotekhnike. T. 3. Teoreticheskie osnovy / pod obshch. red. M. Khebty, A.V. Chichinadze. – M.: Mashinostroenie, 1989. – 400 s.
Kaydanovskiy N.L. Mekhanicheskie relaksatsionnye kolebaniya / N.L. Kaydanovskiy, S.E. Khaykin // ZhTF. – 1933. – T. III, vyp. 1. – S. 91 – 109.
Man'ko N.N. Trenie i iznos tormoznykh kolodok podvizhnogo sostava s uchetom rezhimov tormozheniya / N.N. Man'ko // Izv. vuzov. Gor. zhurn. – 1971. – No 12. – S. 102 – 104.
O velichine koeffitsienta treniya pri malykh skorostyakh skol'zheniya / Novikov E.E., Smirnov V.K., Stakhovskiy E.A. [i dr.] // Teoriya i raschet gornykh mashin. – K., 1982. – S. 39 – 51.
Ishlinskiy A.Yu. O skachkakh pri trenii / A.Yu. Ishlinskiy, I.V. Kragel'skiy // ZhTF. – 1944. – T. XIV, Vyp. 4 – 5. – S. 276 – 283.
Kudinov V.A. Trenie i kolebaniya // Trenie, iznashivanie i smazka: spravochnik: v 2 t. / V.A. Kudinov, D.M. Tolstoy; pod red. I.V. Kragel'skogo, V.V. Alisina. – M.: Mashinostroenie, 1979. – T. 2. – S. 11 – 22.
Martins J.A.C. A study of static and kinetic friction / J.A.C. Martins, J.T. Oden, F.M.E. Simoes // Int. J. Engng. Sci. – 1990. – Vol. 28, No 1. – P. 29 – 92.
Borodich F.M. Friktsionnye avtokolebaniya, obuslovlennye deformirovaniem kontaktiruyushchikh poverkhnostey / F.M. Borodich, I.V. Kryukova // Pis'ma v ZhTF. – 1997. – T. 23, No 6. – S. 67 – 73.
Bobylev A.A. Matematicheskaya model' friktsionnykh avtokolebaniy, obuslovlennykh deformirovaniem sherokhovatostey kontaktiruyushchikh poverkhnostey / A.A. Bobylev, A.N. Koptovets // Metody rozv’iazuvannia prykladnykh zadach mekhaniky deformivnoho tverdoho tila. − D.: Nauka i osvita, 2006. − Vyp. 7. – S. 11 – 21.
Koptovets A.N. Vzaimodeystvie normal'nykh i tangentsial'nykh friktsionnykh avtokolebaniy pri nalichii konstruktivnykh svyazey / A.N. Koptovets, A.A. Bobylev // Vibratsii v tekhnitsi ta tekhnolohiiakh. – Vinnytsia, 2007. – No 3(48). – S. 97 – 100.
Vladimirov V.S. Obobshchennye funktsii v matematicheskoy fizike / V.S. Vladimirov. – M.: Nauka, 1979. – 320 s.
Dyuvo G. Neravenstva v mekhanike i fizike / G. Dyuvo, Zh.-L. Lions. – M.: Nauka, 1980. – 384 s.
Panagiotopulos P. Neravenstva v mekhanike i ikh prilozheniya / P. Panagiotopulos. – M.: Mir, 1989. – 492 s.
Kravchuk A.S. Variatsionnye i kvazivariatsionnye neravenstva v mekhanike / A.S. Kravchuk. – M.: MGAPI, 1997. – 340 s.
Lions J.-L. Surface problems: Methods of variational and quasivariational inequalities / J.-L. Lions // Lect. Notes in Math. Syst. – 1975. – No 461. – P. 129 – 148.