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Abstract 

Purpose. The purpose of this paper is to improve the accuracy of resistance variation fault diagnosis in mine ventilation 

systems under unbalanced datasets. 

Methods. Based on WGAN-div, the unbalanced dataset is enhanced to achieve effective expansion of the original samples. A 

Bagging integrated learning and ResNet deep learning model is integrated to facilitate fault diagnosis of the ventilation system. 

Findings. Taking the simple T-shaped ventilation network as an example, fault datasets with unbalance ratios of 1:2, 1:8, 

1:10, and 1:20 are constructed. The influence of unbalanced samples on windage alteration fault diagnosis (WAFs) of the ven-

tilation system is deeply analyzed. Taking the ventilation system of Dongshan coal mine as the experimental object, fault  

diagnosis comparison experiments are conducted using different data augmentation models and classification models. Multiple 

evaluation indicators, along with t-SNE visualization, are used to assess the validity of the models. The results show that  

the data generated by the WGAN-div model has a good similarity to the real data. Compared to the GAN, WGAN, and 

WGAN-GP, the WGAN-DIV is superior. The performance of the ResNet deep learning model has improved significantly. 

Originality. This paper conducts research on fault diagnosis of ventilation systems using unbalanced datasets from both the 

data level and the network system level, effectively addressing the issue of sample imbalance in the actual working conditions 

of mine ventilation systems. 

Practical implications. The proposed method can provide technical support for the application of intelligent ventilation, 

enhancing both the reliability of monitoring and the overall safety performance of mine ventilation systems. 
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1. Introduction 

The stable operation of the mine ventilation system is a 

crucial factor in ensuring the safety of mine production, the 

orderly operation of equipment, and disaster prevention and 

reduction. With the advancement of underground mining 

work, the expansion of roadway branches is increasing, and 

the difficulty of ventilation system management is also  

increasing. However, air leakage, tunnel caving, damper 

opening, damage to ventilation facilities, and other faults in 

the ventilation system can cause changes in wind resistance 

along the roadway. The fault that causes the permanent 

change of the roadway wind resistance is called the 

WAFs [1]. The WAFs will cause a change in underground 

air flow, leading to the accumulation of dust and gas, and 

reducing the stability of the mine ventilation system and its 

ability to resist disasters. The topological relationship of the 

underground ventilation network is complicated. When the 

wind resistance of a branch changes, the air volume of itself 

and other branches will also change accordingly; therefore, 

the data monitored by the wind speed sensor can only indi-

cate the change of the air volume of the roadway where the 

sensor is located, but it cannot be determined which roadway 

is faulty. Therefore, determining the fault location in a timely 

and accurate manner has become a challenging problem to 

solve in coal mines [2]-[4]. Applying a machine learning 

algorithm to realize intelligent fault diagnosis of the ventila-

tion system and help intelligent management of mine ventila-

tion is the key to this research. 

With the development of big data, industrial Internet, arti-

ficial intelligence and other technologies, fault diagnosis 

technology has matured in different engineering fields such 

as power system [5], [6], aerospace [7], [8], mechanical 

equipment [9], wind power generation [10], [11], automo-

bile [12], [13], heating system [14], water supply and distri-

bution system [15] and so on. 

In 2018, Liu et al. [16], [17] utilized air volume as an in-

put feature. They employed the Support Vector Machine 

algorithm to identify the fault location and quantity of the 

mine ventilation system, thereby pioneering the application 

of machine learning to fault diagnosis in mine ventilation 

systems. In 2020, an unsupervised fault diagnosis model for 

mine ventilation systems was developed using a genetic 

algorithm, which eliminates the need for training samples 

and significantly enhances diagnostic performance. Huang et 
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al. employed a Kalman filter model to preprocess the wind 

speed monitoring data of the mine. They proposed an unsu-

pervised learning fault diagnosis model for the mine ventila-

tion system, based on a hybrid coding algorithm, to simulta-

neously diagnose fault location and fault volume [1], [18]. 

Zhou et al. optimized the parameters of the SVM model for 

fault diagnosis of the mine ventilation system using an im-

proved genetic algorithm, effectively avoiding the model 

overfitting problem [19]. Ni et al. proposed a ventilation 

system fault diagnosis method based on Random Forest and 

Decision Tree. They confirmed that the Random Forest mo-

del is superior to the Decision Tree model [20], [21]. Zhang 

et al. selected the SVM algorithm, the ANN algorithm, and 

the RF algorithm to conduct a comparative analysis of the 

fault diagnosis of the mine ventilation system, and the results 

showed that the ANN algorithm had higher accuracy [22]. 

Zhao et al. used the Daming coal mine as the subject of their 

research. They applied the improved SVM algorithm to the 

fault diagnosis of the ventilation system in the fault roadway 

range database, thereby reducing the fault location range and 

improving the sample training efficiency [23]. In 2022, 

Wang et al. studied the identification algorithm when multi-

ple branches of the mine ventilation system failed at the same 

time, and built a machine learning model based on multi-

label K-nearest neighbor, which was the first proposed meth-

od to solve the rapid diagnosis when multiple locations of the 

mine ventilation system failed [24]. Liu et al. applied four 

machine learning algorithms to fully evaluate the perfor-

mance of the fault diagnosis model for the mine ventilation 

system. They determined the superiority of the KNN algo-

rithm and the DT algorithm. Meanwhile, the influence of 

four factors, sample dispersion, sample number, input feature 

and feature number on the generalization performance of the 

fault diagnosis model is analyzed, which provides a reference 

for the establishment of a machine learning model for WAFs 

of the ventilation system [25], [26]. 

Currently, a fault diagnosis model for the mine ventila-

tion system is being established based on relatively com-

plete data sets. However, in the actual ventilation system 

failure situation, a complete data set cannot be obtained. 

How to carry out fault diagnosis of the ventilation system in 

the case of unbalanced samples is a serious challenge. In 

view of this, the authors conduct research on the fault diag-

nosis of WAFs using unbalanced samples from both the data 

level and the network system level. In this research, a Was-

serstein distance for GANs (WGAN-div) model is con-

structed to enhance the original data and reconstruct a ba-

lanced dataset. The WAFs of the ventilation system are 

realized by integrating the Bagging ensemble learning mo-

del and the ResNet deep learning model. This research pro-

vides technical support for the practical application of intel-

ligent diagnosis technology in the mining industry. 

2. Methods 

2.1. Unbalanced analysis of the ventilation 

system fault sample 

In actual working conditions of mine ventilation systems, 

the roadway containing ventilation structures, the mining face, 

the main windway, the intersection of ventilation branches, 

and other positions are prone to failure. These roadways gen-

erate more fault data, while other roadways generate less fault 

data. There is a significant gap in the number of fault samples 

generated by each branch, resulting in a data imbalance prob-

lem. The unbalanced data set of fault branches in the mine 

ventilation system can be described by Equation (1): 
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where: 

Xm – the minority class fault branch data set; 

Yn – the majority class fault branch data set; 

Sm+n – the unbalanced data set of fault branches of the 

ventilation system; 

xi and yi – the ith sample data in each data set; 

m – the number of minority class samples; 

n – the number of majority class samples. 

2.2. The WGAN-div model 

The Generative Adversarial Network model can generate 

new sample data, thereby adjusting the balance between Xm 

and Yn. The GAN model is primarily composed of two parts: 

the discriminator and the generator. However, the traditional 

GAN model is prone to instability during training [27]. In 

2017, Arjovsky et al. developed a Wasserstein divergence for 

GANs (WGAN) model to address the issue of gradient disap-

pearance during the training of traditional GAN models [28]. 

However, during WGAN training, it is typically necessary to 

keep the absolute value of the gradient below a fixed thresh-

old. Literature [29] proposes a WGAN-GP model with penalty 

factors to ensure Lipschitz continuity between generated sam-

ples and real samples, but there is no theoretical basis for this 

scheme. Literature [30] proposes a WGAN-div model that 

does not require Lipschitz constraints and proves its superiority 

both theoretically and in application. Based on previous studies, 

this paper selects the WGA-div data enhancement model, and 

the loss functions are shown in Equations (2) and (3): 
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where: 

LG – the generator loss function; 

LD – the discriminator loss function; 

EG(z)~PG – the expected function of generator noise; 

ˆ~ ux pE  – the expectation function of interpolating x̂ ; 

x̂  – the random interpolation between the generated 

sample and the real sample; 

Pu – is the distribution of interpolation x̂ ; 

k and powers of the norm (according to previous studies 

and experimental tests, k is 2 and p is 6 in this paper). 

To prevent the problem of gradient disappearance or net-

work degradation during WGAN-div model training, identity 

mapping residuals are added to both the discriminator and 

generator. In this paper, the WGAN-div model with residual 

blocks is applied to enhance the unbalanced samples of venti-

lation system monitoring data. The number of minority sam-

ples in the ventilation system sample fault data set is adjusted 

from m to. The balanced data set S' = {X'r, Yn} is further ob-

tained, which is the balanced minority sample data set. 
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2.3. Bagging-ResNet 

The wind speed monitoring data of the mine ventilation 

system has a large dimension, which belongs to the high-

dimensional unbalanced data. The ResNet is well-suited for 

processing classification problems involving high-dimen-

sional data. Still, its performance is significantly influenced 

by the number of neurons, connection mode, number of net-

work layers, and initial weights. This paper attempts to com-

bine Bootstrap aggregating (Bagging) and ResNet to build the 

Bagging-ResNet model, utilizing an integrated learning mod-

el with strong generalization ability to mitigate the instability 

of a single residual network. Thus, the accuracy of WAFs 

diagnosis of the mine ventilation system is improved. The 

wind speed data is taken as the input of the Bagging-ResNet 

classification model, and the fault branch number is taken as 

the output of the classification model. The specific process is 

as follows: the sample data set is sampled using Bootstrap, 

and K sample subsets are obtained. ResNet models are then 

built. The test data are input into the K models to obtain K 

results. The weighted average formula is used to obtain the 

final classification results as shown in Equation (4): 

1

1

=

= 
K

end i
i

y y
K

,               (4) 

where: 

yend – the final classification of the test sets; 

yi – the result of classification of the test set by the ith 

ResNet model; 

yend and yi – both probability values. 

2.4. Overall structure and flow of the WAFs 

diagnosis model 

The overall framework of WAFs diagnosis based on 

WGAN-div-Bagging-ResNet is shown in Figure 1. The spe-

cific process is as follows. The intelligent mine ventilation 

simulation system (IMVS) is used to simulate ventilation 

system faults, and an unbalanced data set O is constructed, 

which is divided into a test set Ost and a train set Oin.  

 

 

Figure 1. WGAN-div-Bagging-ResNet model architecture 

 

The WGAN-div model is applied to the train set Oin for 

data enhancement processing, and a new fault sample On is 

generated, which is added to the original train set Oin to syn-

thesize a new augmented sample Oex. The Bagging-ResNet 

model is trained by the balanced augmented sample set Oex, 

and the trained WAFs diagnosis model is obtained. The test 

set Ost is input into the trained Bagging-ResNet model for 

diagnosing ventilation system faults. 

2.5. Evaluation index 

The evaluation of the WAFs diagnosis of the ventilation 

system multi-classification model is usually based on a bina-

ry classification confusion matrix. For a multi-classification 

problem with unbalanced samples, it isn’t easy to achieve an 

accurate evaluation of classification results. Therefore, Re, 

Pr, G-mean, and F1 are added to evaluate the WAFs diagno-

sis model comprehensively. The definitions of each indicator 

are shown in Equations (5)-(8): 
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where: 

N – the number of branches of the ventilation network in 

the input model; 

TPi – the true positive of the ith faulty branch; 

TNi – the true negative of the ith faulty branch; 

FPi – the false positive of the ith faulty branch; 

FNi – the false negative of the ith faulty branch. 

3. Results and discussion 

3.1. Influence of unbalanced data on WAFs diagnosis 

Taking the simple T-type ventilation network shown in 

Figure 2 as an example, WAF diagnosis experiments are 

designed under different unbalance ratios. The ventilation 

network has 10 branches and 8 nodes. Branches e1 and e10 

are the inlet and return air branches, respectively. There is an 

air window adjustment facility located in the e5. The fan 

characteristic equation is H(q) = 1035.9 + 51.8q – 0.43q2. 

 

 

Figure 2. T ventilation network diagram 

 

The IMVS is used to simulate branch faults, and six sets 

of unbalanced data are generated according to different im-

balance ratios. Six sets of experimental schemes are then 

constructed. In the T-type network, e5 is equipped with an air 

window, which is more prone to failure than other branches; 

therefore, the unbalance ratio can be adjusted by increasing 

the number of failures of e5. H is set to 1:2, 1:8, 1:10, and 

1:20, respectively. The number of simulated failures of the e5 

is set to 100, 250, 400, 500, and 1000. Additionally, the 

number of fault samples for a few classes is set to 50. In this 

experiment, air volume and wind pressure are used as the 

input characteristics of the model. The corresponding air 

volume characteristic experiment schemes are denoted T1, T2, 

T3, and T4, respectively, and the wind pressure characteristic 

experiment schemes are denoted D1, D2, D3, and D4, respec-

tively. Different classification models are used to identify the 

fault branches of the ventilation system. The classification 

models are selected as SVM, KNN, DT, and MLP. 

3.1.1. The result of WAFs diagnosis of the wind 

volume characteristic 

The optimal hyperparameters for each experimental model 

under varying wind volume characteristics are determined 

using the 50% cross-validation method, as shown in Table 1. 

The definitions of each parameter are provided in Table 2. 

Figure 3 shows that when wind volume is used as an in-

put feature and SVM is used as a classification model, the 

average index values of Pr, Re, F1, and G-mean of T1 are 

0.9, 0.86, 0.88, and 0.84, respectively. The average index 

values of Pr, Re, F1, and G-mean of T2 are 0.85, 0.71, 0.77, 

and 0.69, respectively. The average index values of Pr, Re, 

F1, and G-mean of T3 are 0.77, 0.63, 0.68, and 0.62, respec-

tively. The average index values of Pr, Re, F1, and G-mean 

of T4 are 0.68, 0.49, 0.55, and 0.59, respectively. With the 

increase in data imbalance, the evaluation index values of the 

SVM classification model showed a gradual decline. 

 
Table 1. WAFs results of each model with the feature of wind volume 

Algorithm Parameter T1 T2 T3 T4 

SVM 

g 0.241 0.121 0.012 0.321 

c 0.1 0.1 0.2 0.2 

K RBF RBF RBF RBF 

KNN 
kn 1 1 2 2 

lp 6 4 1 10 

DT 
Mf 0.2 0.6 0.6 0.4 

Nleaf 2 5 5 3 

 
Table 2. Definition of each classification model parameter 

Parameter Definition 

c Penalty coefficient 

g Nuclear parameter 

K Kernel function 

Nleaf 
The minimum number of samples re-

quired for leaf nodes 

kn The number of nearest neighbors 

lp Minkowski distance power parameters 

Mf The best segmentation ratio of features 
 

 

 

Figure 3. Evaluation indices of each model with the feature of wind volume under the imbalanced data  
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Compared with experiment T1 (data unbalance ratio 2:1) 

and experiment T4 (data unbalance ratio 20:1), the Pr, Re, 

F1, and G-mean values decreased by 22, 38, 33, and 25%, 

respectively. Evaluation indices of KNN and DT classifica-

tion models show the same trend as SVM, Pr, Re, F1, and  

G-mean values of experiment T4 in the KNN model de-

creased by 22, 37, 32, and 29%, respectively, compared with 

experiment T1. In the DT model, the Pr, Re, F1, and G-mean 

values of experiment T4 decreased by 13, 28, 23, and 27%, 

respectively, compared with experiment T1. 

It can be seen that unbalanced data significantly affects 

the overall performance of the model, resulting in a reduced 

index score. Furthermore, unbalanced data leads to more 

missed judgments and incorrect predictions in each model. 

3.1.2. The result of WAFs diagnosis of the wind 

pressure characteristic 

The best hyperparameters of each experimental model 

under wind pressure characteristics are shown in Table 3, and 

the definitions of each parameter are shown in Table 2. 

WAFs diagnosis evaluation indexes of three machine learn-

ing algorithms are shown in Figure 4. 

 

Table 3. WAFs results of each model with the feature of wind 

pressure 

Algorithm Parameter T1 T2 T3 T4 

SVM 

g 0.12 0.154 0.35 0.51 

c 0.1 0.1 0.02 0.1 

K RBF RBF RBF RBF 

KNN 
kn 2 1 2 3 

lp 6 4 5 10 

DT 
Mf 0.2 0.3 1.2 0.4 

Nleaf 2 5 3 3 

 

As shown in Figure 4, with wind pressure as the input 

feature, the Pr, Re, F1, and G-mean values of T4 decreased 

by 27, 30, 28, and 30%, respectively, compared to experi-

ment T1, using the SVM algorithm. The Pr, Re, F1, and  

G-mean values of T4 decreased by 29, 25, 27, and 29%, 

respectively, using the KNN algorithm. The Pr, Re, F1, and  

G-mean values of T4 decreased by 25, 23, 28, and 27%, 

respectively, using the DT algorithm. This indicates that  

the WAFs diagnosis results, which use wind pressure as the 

input feature, are also affected by the degree of  

sample imbalance. 

 

Figure 4. Evaluation indices of each model with the feature of wind pressure under the imbalanced data 

 

Compared with the indices of each model under the  

cha-racteristics of wind pressure, it can be seen that  

the indices under the characteristics of wind volume  

are lower, indica-ting that the characteristics of wind  

volume are more suitable for the WAFs diagnosis of the 

mine ventilation system. 

To sum up, the conventional machine learning classifi-

er builds a model based on the rules derived from a large 

amount of data, while ignoring the characteristics of data 

from other branches. As a result, it is easy to misdiagnose 

the faults of other branches as the branches of the  

majority class during classification. As the imbalance ratio 

increases, the proportion of fault samples that are  

misjudged gradually increases. If the fault branch is  

misidentified as another branch, the optimal maintenance 

time for the mine ventilation tunnel will be missed.  

This further illustrates the harm of unbalanced samples  

to the WAFs diagnosis model. The research is both neces-

sary and practical. 

 

3.2. Large mine test 

3.2.1. WAFs data preparation 

Taking the ventilation system of Dongshan coal mine as 

an example, a diagnosis test is conducted using the unba-

lanced sample WAFs. The ventilation mode of the mine is 

diagonal, and the ventilation network of the mine is shown in 

Figure 5. The number of branches is 96, the number of nodes 

is 84, and the total inlet air volume is 14394 m3/min. The 

branches corresponding to the four inlet shafts are e2, e1, e23, 

and e5, respectively. The branch numbers for installing the 

damper are e47, e85, e28, e86, e48, e78, e22, e7, e30, e38, e29, e19, 

e65, e52, e84, and e33. The branch numbers for installing wind 

windows are e10, e83, e24, e13, and e93. IMVS is used to simu-

late branch faults. These branches of installed structures are 

simulated 200 times with faults. The other branches are sim-

ulated with 10 times the faults. A total of 5120 fault samples 

are obtained. The data imbalance ratio is 20:1. According to 

the experimental results in Section 4.1, wind speed is select-

ed as the input feature of the model in this paper, and some 

data are shown in Table 4.  
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Table 4. Fault sample set in the production mine 

Samples v'1 v'2 v'3 v'4 v'5 v'6 v'7 v'8 v'9 v'10 v'11 v'12 v'13 v'14 v'15 e'i 

1 3.6 5.6 7.6 4.2 3.9 4.1 2.6 10.4 4.7 4.2 3.2 3.8 9.6 4.2 3.2 e85 

2 3.6 5.4 7.8 4.1 3.9 4.2 2.4 10.2 4.8 4.2 3.1 3.9 9.5 4.1 3.3 e85 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

201 3.5 3.6 7.9 4.1 3.8 7.1 2.6 3.6 4.7 4.3 3.2 8.0 4.3 4.2 3.1 e33 

202 3.4 3.5 7.8 4.2 3.7 7.2 2.5 3.7 4.6 4.2 3.1 7.9 4.4 4.2 3.2 e33 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

5119 6.5 5.6 7.6 4.4 3.6 4.4 2.6 0.7 4.5 4.3 3.2 3.8 0.5 4.0 3.1 e92 

5120 6.4 5.6 7.8 4.3 3.6 4.3 2.5 0.6 4.6 4.4 3.3 3.9 0.3 4.2 3.0 e92 

 

Where v'i is the wind speed of each branch (m/s), e'i is the 

faulty branch. The fault sample data, after standardized  

processing, is divided into training samples and test samples 

in a ratio of 7:3. 

 

 

Figure 5. Ventilation network of Dongshan coal mine 

3.2.2. Validation of WGAN-div 

To verify the effectiveness of WGAN-div in processing 

unbalanced data from the ventilation system, the original 

fault samples are processed by the following models:  

original data set Oin, GAN, WGAN, WGAN-gp, and 

WGAN-div. This allows for the creation of a combined 

sample set, Oex, to achieve data balance. The Bagging-

ResNet algorithms are then chosen for classification. The 

test results are presented in Table 5, which shows the mean 

and standard deviation of the results from ten runs (the 

optimal results are highlighted in bold). 

It can be seen from Table 5 that, compared with the origi-

nal data set, after the enhancement of WGAN-div, ACC 

increased by 16.1%, Re increased by 15.8%, Pr increased by 

16%, G-mean increased by 15.8%, and F1 increased by 

16.2%, respectively. It demonstrates that utilizing the 

WGAN-div model to enhance the unbalanced fault data can 

effectively improve the quality of the original data and  

enhance the discriminant performance of the classifier. After 

using GAN, WGAN, and WGAN-GP for data enhancement, 

although the accuracy and G-mean indexes are increased, the 

classification model’s ability is enhanced; however, there is 

no noticeable improvement in F1. 

 
Table 5. Experimental results of different data enhancement methods 

Method ACC Re Pr G-mean F1 

Oin 0.810 ± 0.012 0.814 ± 0.06 0.811 ± 0.102 0.814 ± 0.071 0.808 ± 0.12 

GAN 0.912 ± 0.025 0.910 ± 0.014 0.911 ± 0.047 0.916 ± 0.025 0.814 ± 0.015 

WGAN 0.920 ± 0.021 0.943 ± 0.017 0.724 ± 0.02 0.934 ± 0.024 0.813 ± 0.01 

WGAN-gp 0.931 ± 0.018 0.936 ± 0.017 0.845 ± 0.054 0.947 ± 0.02 0.892 ± 0.065 

WGAN-div 0.971 ± 0.006 0.972 ± 0.121 0.971 ± 0.014 0.972 ± 0.039 0.97 ± 0.041 

 

The analysis reveals that the model expands new fault 

samples of poor quality, which impacts the classification 

model’s ability to discriminate between fault branch diagno-

ses. Compared with GAN, WGAN, and WGAN-gp, the 

WGAN-div model has the highest evaluation indexes, and 

the scores of ACC, Re, Pr, G-mean, and F1 are 97.1, 97.2, 

97.1, 97.1 and 97%, respectively, which significantly im-

proves the classification model’s ability to identify fault 

branches. The superiority of the proposed WGAN-div in 

processing unbalanced data is verified. 

The visualization analysis of the sample generation from 

the WGAN-div model is performed by applying the t-SNE 

(t-Stochastic Neighbor Embedding) algorithm. Figure 6 

shows the distribution between the generated samples and 

the real samples of the model for iteration N values of 0, 100, 

200, 500, 800, and 1000, respectively. Figure 7 shows the 

change in the model loss function.  

 

 generated data

 real data 

N=0 N=100 N=200

N=500 N=800 N=1000  

Figure 6. t-SNE dimension reduction data visualization 
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Figure 7. WGAN-div loss function 

 

According to Figures 6 and 7, as the number of iterations 

increases, the loss function of the WAGN-div model  

converges steadily and becomes stable gradually. The distri-

bution of the generated new sample data and the real data 

gradually blends, and the generated data exhibits a high  

similarity to the real data, with the quality of the generated 

data continually improving. 

3.2.3. Validation of Bagging-ResNet 

To demonstrate the superiority of Bagging-ResNet, the fol-

lowing classical ensemble learning classification models are 

selected for comparison: CBT, LGB, and GBDT. WGAN-div 

processes the original sample. In addition, the RF of the venti-

lation system WAFs diagnosis proposed in reference [31] is 

also included in the comparative test of this paper. To more 

intuitively reflect the advantages and disadvantages of the 

classifier, this paper introduces the receiver operating charac-

teristic curve (ROC) and the area under the ROC curve (AUC) 

for evaluation. The closer the ROC curve is to the vertical axis, 

the larger the AUC value, and the better the classifier’s per-

formance is. If the ROC curve lies below the y = x line, the 

classification effect is highly unsatisfactory. The evaluation 

indicators of each model are shown in Figure 8. The ROC 

curve and AUC values are shown in Figure 9. 

It can be seen from Figures 8 and 9 that all evaluation in-

dices of the Bagging-ResNet model are the highest, and the 

ROC curve is closer to the vertical axis. From the perspective 

of comprehensive evaluation indicators, compared with RF, 

CBT, LGB, and GBDT, Re increased by 1, 4.5, 3.2, and 4%, 

respectively, Pr increased by 0.8, 4, 3.9, and 5.1%, respec-

tively, G-mean increased by 1.1, 5.2, 2.7, and 4.1%, F1 in-

creased by 1, 4.4, 3.7, and 4.4%, AUC increased by 1.4, 6.4, 

4.1, and 3.5%, respectively. 
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Figure 8. Evaluation index values of each model 
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Figure 9. ROC curve and AUC value of each model 

 

The weak classifiers integrated with RF, CBT, LGB, and 

GBDT are shallow networks, and their learning ability is 

significantly inferior to that of Bagging-ResNet. In general, 

the Bagging-ResNet model is suitable for the diagnosis of 

WAFs in mine ventilation systems. The integration of  

ResNet with Bagging yields stronger generalization of the 

model and better performance than other models in terms of 

Re, Pr, G-mean, F1, and AUC. 

3.3. Summary of key findings and future 

research directions 

The experimental results demonstrate that the proposed 

WGAN-div-Bagging-ResNet framework significantly en-

hances the diagnostic performance for windage alteration 

faults (WAFs) under imbalanced sample conditions. Com-

pared to conventional machine learning models such as 

SVM, KNN, and DT, the integrated approach exhibits supe-

rior robustness and accuracy, particularly as the imbalance 

ratio increases. This improvement can be attributed to the 

synergistic combination of high-quality data augmentation 

and a deep ensemble classifier, which collectively mitigate 

the bias toward majority classes and enhance feature learning 

from limited fault samples. The superior performance of 

WGAN-div over other generative models (GAN, WGAN, 

WGAN-gp) lies in its theoretical and structural advantages. 

The data generated by WGAN-div blends seamlessly with 

real samples, indicating high distributional similarity. This 

ensures that the augmented dataset preserves the underlying 

physical characteristics of ventilation system faults, thereby 

improving the discriminative capability of the classifier. 

The proposed method offers a viable solution for real-

world mine ventilation systems, where fault data are often 

scarce and unevenly distributed. By effectively balancing the 

dataset and enhancing model generalizability, the framework 

reduces misdiagnosis and missed alarms. This approach 

aligns with the trend toward intelligent ventilation manage-

ment, providing a scalable tool for operational safety in  

complex mining environments. 

Currently, the fault diagnosis of mine ventilation systems 

primarily relies on simulation methods to generate simulated 

data for training intelligent diagnostic models. A critical 

direction for future research is, therefore, the development of 

precise and rapid testing technologies for key ventilation 

parameters. Success in this area would enable the collection 

of high-fidelity, real-condition datasets. Training intelligent 
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diagnostic models on such data would significantly enhance 

their accuracy, reliability, and generalization capability for 

direct field deployment. 

4. Conclusion 

A simple T-ventilation network is taken as an example to 

illustrate the impact of an unbalanced sample on the WAFs 

diagnosis model. The unbalanced data of mine ventilation 

system will degrade the classification performance of tradi-

tional machine learning models and even cause failures. The 

wind volume characteristic is more suitable for the diagnosis 

of mine ventilation systems using WAFs. 

Fault diagnosis tests and t-SNE visualization results indi-

cate that the WGAN-div model with residual blocks can 

generate high-quality new data, thereby expanding the sam-

ple set. The scores of ACC, Re, Pr, G-mean, and F1 of 

WGAN-div are 97.1, 97.2, 97.1, 97.1 and 97%, respectively. 

Compared to other data enhancement models, WGAN-div 

has more advantages in handling unbalanced samples. 

With the help of the Bagging integration idea, the Bagging-

ResNET model is built. By integrating multiple ResNet classi-

fiers, various learning models, including RF, CBT, LGB, and 

GBDT, are introduced for comparison with ResNet.The com-

prehensive evaluation index scores of Bagging-ResNet are 

more favorable than those of other integrated models. 
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Модель машинного навчання для діагностики відхилень опору у вентиляційній системі 

шахти за умов незбалансованих даних 

З. Шен, М. Ян, Д. Зао 

Мета. Підвищення точності діагностики несправностей, пов’язаних зі зміною аеродинамічного опору у вентиляційних системах 

шахт, за умов незбалансованих даних на розробки інтегрованої методики, що поєднує генеративне балансування вибірки та ансам-

блеву глибоку класифікацію. 

Методика. На основі WGAN-div виконується штучне розширення незбалансованих даних з метою ефективного збільшення по-

чаткового масиву. Для забезпечення діагностики несправностей у вентиляційній системі інтегровано ансамблевий метод Bagging та 

глибоку нейронну мережу ResNet. 

Результати. Сформовано експериментальні набори даних з коефіцієнтами незбалансованості 1:2, 1:8, 1:10 та 1:20 на прикладі 

простої Т-подібної вентиляційної мережі. Детально проаналізовано вплив незбалансованих даних на діагностику відхилень опору 

(WAFs) у вентиляційній системі. Виконано порівняльні експерименти із застосуванням різних моделей збільшення даних та моде-

лей класифікації для вентиляційної системи шахти Донгшань Для оцінювання ефективності моделей використано низку показни-

ків, а також візуалізацію t-SNE. Результати показують, що дані, згенеровані моделлю WGAN-div, з вискоим рівнем достовірності 

узгоджуються з реальними, при цьому у порівнянні з GAN, WGAN і WGAN-GP модель WGAN-div демонструє кращі характерис-

тики, а продуктивність глибокої моделі ResNet також суттєво зросла. 

Наукова новизна. У роботі вперше проведено дослідження діагностики несправностей вентиляційних систем за умов незбала-

нсованих даних як на рівні самих даних, так і на рівні мережевої моделі, що дозволяє ефективно розв’язати проблему дисбалансу, 

характерну для реальних умов роботи вентиляційних систем шахт. 

Практична значимість. Запропонований підхід може слугувати технічною основою для впровадження інтелектуальних систем 

вентиляції, підвищуючи надійність моніторингу та загальний рівень безпеки вентиляційних систем шахт. 

Ключові слова: вентиляційна система шахти, діагностика несправностей, незбалансовані дані, генеративно-змагальна  

мережа, Bagging-ResNet 
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