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Abstract

Purpose. The purpose of this paper is to improve the accuracy of resistance variation fault diagnosis in mine ventilation
systems under unbalanced datasets.

Methods. Based on WGAN-div, the unbalanced dataset is enhanced to achieve effective expansion of the original samples. A
Bagging integrated learning and ResNet deep learning model is integrated to facilitate fault diagnosis of the ventilation system.

Findings. Taking the simple T-shaped ventilation network as an example, fault datasets with unbalance ratios of 1:2, 1:8,
1:10, and 1:20 are constructed. The influence of unbalanced samples on windage alteration fault diagnosis (WAFs) of the ven-
tilation system is deeply analyzed. Taking the ventilation system of Dongshan coal mine as the experimental object, fault
diagnosis comparison experiments are conducted using different data augmentation models and classification models. Multiple
evaluation indicators, along with t-SNE visualization, are used to assess the validity of the models. The results show that
the data generated by the WGAN-div model has a good similarity to the real data. Compared to the GAN, WGAN, and
WGAN-GP, the WGAN-DIV is superior. The performance of the ResNet deep learning model has improved significantly.

Originality. This paper conducts research on fault diagnosis of ventilation systems using unbalanced datasets from both the
data level and the network system level, effectively addressing the issue of sample imbalance in the actual working conditions
of mine ventilation systems.

Practical implications. The proposed method can provide technical support for the application of intelligent ventilation,
enhancing both the reliability of monitoring and the overall safety performance of mine ventilation systems.
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1. Introduction

The stable operation of the mine ventilation system is a
crucial factor in ensuring the safety of mine production, the
orderly operation of equipment, and disaster prevention and
reduction. With the advancement of underground mining
work, the expansion of roadway branches is increasing, and
the difficulty of ventilation system management is also
increasing. However, air leakage, tunnel caving, damper
opening, damage to ventilation facilities, and other faults in
the ventilation system can cause changes in wind resistance
along the roadway. The fault that causes the permanent
change of the roadway wind resistance is called the
WAFs [1]. The WAFs will cause a change in underground
air flow, leading to the accumulation of dust and gas, and
reducing the stability of the mine ventilation system and its
ability to resist disasters. The topological relationship of the
underground ventilation network is complicated. When the
wind resistance of a branch changes, the air volume of itself
and other branches will also change accordingly; therefore,
the data monitored by the wind speed sensor can only indi-
cate the change of the air volume of the roadway where the
sensor is located, but it cannot be determined which roadway
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is faulty. Therefore, determining the fault location in a timely
and accurate manner has become a challenging problem to
solve in coal mines [2]-[4]. Applying a machine learning
algorithm to realize intelligent fault diagnosis of the ventila-
tion system and help intelligent management of mine ventila-
tion is the key to this research.

With the development of big data, industrial Internet, arti-
ficial intelligence and other technologies, fault diagnosis
technology has matured in different engineering fields such
as power system [5], [6], aerospace [7],[8], mechanical
equipment [9], wind power generation [10], [11], automo-
bile [12], [13], heating system [14], water supply and distri-
bution system [15] and so on.

In 2018, Liu et al. [16], [17] utilized air volume as an in-
put feature. They employed the Support Vector Machine
algorithm to identify the fault location and quantity of the
mine ventilation system, thereby pioneering the application
of machine learning to fault diagnosis in mine ventilation
systems. In 2020, an unsupervised fault diagnosis model for
mine ventilation systems was developed using a genetic
algorithm, which eliminates the need for training samples
and significantly enhances diagnostic performance. Huang et
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al. employed a Kalman filter model to preprocess the wind
speed monitoring data of the mine. They proposed an unsu-
pervised learning fault diagnosis model for the mine ventila-
tion system, based on a hybrid coding algorithm, to simulta-
neously diagnose fault location and fault volume [1], [18].
Zhou et al. optimized the parameters of the SVM model for
fault diagnosis of the mine ventilation system using an im-
proved genetic algorithm, effectively avoiding the model
overfitting problem [19]. Ni et al. proposed a ventilation
system fault diagnosis method based on Random Forest and
Decision Tree. They confirmed that the Random Forest mo-
del is superior to the Decision Tree model [20], [21]. Zhang
et al. selected the SVM algorithm, the ANN algorithm, and
the RF algorithm to conduct a comparative analysis of the
fault diagnosis of the mine ventilation system, and the results
showed that the ANN algorithm had higher accuracy [22].
Zhao et al. used the Daming coal mine as the subject of their
research. They applied the improved SVM algorithm to the
fault diagnosis of the ventilation system in the fault roadway
range database, thereby reducing the fault location range and
improving the sample training efficiency [23]. In 2022,
Wang et al. studied the identification algorithm when multi-
ple branches of the mine ventilation system failed at the same
time, and built a machine learning model based on multi-
label K-nearest neighbor, which was the first proposed meth-
od to solve the rapid diagnosis when multiple locations of the
mine ventilation system failed [24]. Liu et al. applied four
machine learning algorithms to fully evaluate the perfor-
mance of the fault diagnosis model for the mine ventilation
system. They determined the superiority of the KNN algo-
rithm and the DT algorithm. Meanwhile, the influence of
four factors, sample dispersion, sample number, input feature
and feature number on the generalization performance of the
fault diagnosis model is analyzed, which provides a reference
for the establishment of a machine learning model for WAFs
of the ventilation system [25], [26].

Currently, a fault diagnosis model for the mine ventila-
tion system is being established based on relatively com-
plete data sets. However, in the actual ventilation system
failure situation, a complete data set cannot be obtained.
How to carry out fault diagnosis of the ventilation system in
the case of unbalanced samples is a serious challenge. In
view of this, the authors conduct research on the fault diag-
nosis of WAFs using unbalanced samples from both the data
level and the network system level. In this research, a Was-
serstein distance for GANs (WGAN-div) model is con-
structed to enhance the original data and reconstruct a ba-
lanced dataset. The WAFs of the ventilation system are
realized by integrating the Bagging ensemble learning mo-
del and the ResNet deep learning model. This research pro-
vides technical support for the practical application of intel-
ligent diagnosis technology in the mining industry.

2. Methods

2.1. Unbalanced analysis of the ventilation
system fault sample

In actual working conditions of mine ventilation systems,
the roadway containing ventilation structures, the mining face,
the main windway, the intersection of ventilation branches,
and other positions are prone to failure. These roadways gen-
erate more fault data, while other roadways generate less fault
data. There is a significant gap in the number of fault samples

generated by each branch, resulting in a data imbalance prob-
lem. The unbalanced data set of fault branches in the mine
ventilation system can be described by Equation (1):

Sm+n = {Xm’Yn}

Xm :{xi ‘i:1729“'9m}5 (1)
Y, ={y;|i=12,--,n}
where:

Xn — the minority class fault branch data set;

Y, — the majority class fault branch data set;

Smin — the unbalanced data set of fault branches of the
ventilation system;

x; and y; — the i sample data in each data set;

m — the number of minority class samples;

n — the number of majority class samples.

2.2. The WGAN-div model

The Generative Adversarial Network model can generate
new sample data, thereby adjusting the balance between X,
and Y,. The GAN model is primarily composed of two parts:
the discriminator and the generator. However, the traditional
GAN model is prone to instability during training [27]. In
2017, Arjovsky et al. developed a Wasserstein divergence for
GANs (WGAN) model to address the issue of gradient disap-
pearance during the training of traditional GAN models [28].
However, during WGAN training, it is typically necessary to
keep the absolute value of the gradient below a fixed thresh-
old. Literature [29] proposes a WGAN-GP model with penalty
factors to ensure Lipschitz continuity between generated sam-
ples and real samples, but there is no theoretical basis for this
scheme. Literature [30] proposes a WGAN-div model that
does not require Lipschitz constraints and proves its superiority
both theoretically and in application. Based on previous studies,
this paper selects the WGA-div data enhancement model, and
the loss functions are shown in Equations (2) and (3):

Lg =~Ea(zy-r; | P(G(2)) ]: @
Lp =EG(z)-p, [D(G(Z))J—Ex~M, x
x[D(x)—kE);N o VD (3)] }

where:
Lg — the generator loss function;
Lp — the discriminator loss function;
Ece)-pc — the expected function of generator noise;

A3)

E;. p, — the expectation function of interpolating x;

x —the random interpolation between the generated
sample and the real sample;

P, — is the distribution of interpolation % ;

k and powers of the norm (according to previous studies
and experimental tests, k is 2 and p is 6 in this paper).

To prevent the problem of gradient disappearance or net-
work degradation during WGAN-div model training, identity
mapping residuals are added to both the discriminator and
generator. In this paper, the WGAN-div model with residual
blocks is applied to enhance the unbalanced samples of venti-
lation system monitoring data. The number of minority sam-
ples in the ventilation system sample fault data set is adjusted
from m to. The balanced data set S'= {X',, V,,} is further ob-
tained, which is the balanced minority sample data set.
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2.3. Bagging-ResNet

The wind speed monitoring data of the mine ventilation
system has a large dimension, which belongs to the high-
dimensional unbalanced data. The ResNet is well-suited for
processing classification problems involving high-dimen-
sional data. Still, its performance is significantly influenced
by the number of neurons, connection mode, number of net-
work layers, and initial weights. This paper attempts to com-
bine Bootstrap aggregating (Bagging) and ResNet to build the
Bagging-ResNet model, utilizing an integrated learning mod-
el with strong generalization ability to mitigate the instability
of a single residual network. Thus, the accuracy of WAFs
diagnosis of the mine ventilation system is improved. The
wind speed data is taken as the input of the Bagging-ResNet
classification model, and the fault branch number is taken as
the output of the classification model. The specific process is
as follows: the sample data set is sampled using Bootstrap,
and K sample subsets are obtained. ResNet models are then
built. The test data are input into the K models to obtain K

generator G

AR —

update G

—————

results. The weighted average formula is used to obtain the
final classification results as shown in Equation (4):
1 K
Yend :Eiz‘lyi > 4)
where:
Vend — the final classification of the test sets;
y; — the result of classification of the test set by the i*"

ResNet model;
Vena and y; — both probability values.

2.4. Overall structure and flow of the WAFs
diagnosis model

The overall framework of WAFs diagnosis based on
WGAN-div-Bagging-ResNet is shown in Figure 1. The spe-
cific process is as follows. The intelligent mine ventilation
simulation system (IMVS) is used to simulate ventilation
system faults, and an unbalanced data set O is constructed,
which is divided into a test set Oy and a train set O;,.

ventilation
system sample

result i l

noisez  Fully connected layer  Convolution layer

L 2

Generate sample

True sample

¥

sclanlaal  Tacl
PN e e N
r_-——

test
sample

Bootstrap aggregating Parallel training

Figure 1. WGAN-div-Bagging-ResNet model architecture

The WGAN-div model is applied to the train set O;, for
data enhancement processing, and a new fault sample O, is
generated, which is added to the original train set O;, to syn-
thesize a new augmented sample O... The Bagging-ResNet
model is trained by the balanced augmented sample set O,
and the trained WAFs diagnosis model is obtained. The test
set Oy is input into the trained Bagging-ResNet model for
diagnosing ventilation system faults.

2.5. Evaluation index

The evaluation of the WAFs diagnosis of the ventilation
system multi-classification model is usually based on a bina-
ry classification confusion matrix. For a multi-classification
problem with unbalanced samples, it isn’t easy to achieve an
accurate evaluation of classification results. Therefore, Re,
Pr, G-mean, and F1 are added to evaluate the WAFs diagno-
sis model comprehensively. The definitions of each indicator
are shown in Equations (5)-(8):
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where:
— the number of branches of the ventilation network in
the input model;
Tp; — the true positive of the i faulty branch;
Tw; — the true negative of the i faulty branch;
Fp; — the false positive of the i faulty branch;
Fyi — the false negative of the i faulty branch.

3. Results and discussion

3.1. Influence of unbalanced data on WAFs diagnosis

Taking the simple T-type ventilation network shown in
Figure 2 as an example, WAF diagnosis experiments are
designed under different unbalance ratios. The ventilation
network has 10 branches and 8 nodes. Branches e; and ejo
are the inlet and return air branches, respectively. There is an
air window adjustment facility located in the es. The fan
characteristic equation is H(g) = 1035.9 + 51.8q — 0.434°.

Figure 2. T ventilation network diagram

The IMVS is used to simulate branch faults, and six sets
of unbalanced data are generated according to different im-
balance ratios. Six sets of experimental schemes are then
constructed. In the 7-type network, es is equipped with an air
window, which is more prone to failure than other branches;
therefore, the unbalance ratio can be adjusted by increasing
the number of failures of es. H is set to 1:2, 1:8, 1:10, and
1:20, respectively. The number of simulated failures of the es
is set to 100, 250, 400, 500, and 1000. Additionally, the
number of fault samples for a few classes is set to 50. In this
experiment, air volume and wind pressure are used as the
input characteristics of the model. The corresponding air
volume characteristic experiment schemes are denoted T, 7>,

T, T,
@ é 1.0 .
= 5| o
e B &
oo T B (3
Pr  Re FI G-mean Pr Re FI G-mean
1.0 . 1.0 :
O-SQ
SE = B e - 5 @
0.6 |
Re FI G-mean Pr  Re F1 G-mean
Re F1 G-mean Re F1 G-mean

T3, and Ti, respectively, and the wind pressure characteristic
experiment schemes are denoted D1, D>, D3, and D4, respec-
tively. Different classification models are used to identify the
fault branches of the ventilation system. The classification
models are selected as SVM, KNN, DT, and MLP.

3.1.1. The result of WAF's diagnosis of the wind
volume characteristic

The optimal hyperparameters for each experimental model
under varying wind volume characteristics are determined
using the 50% cross-validation method, as shown in Table 1.
The definitions of each parameter are provided in Table 2.

Figure 3 shows that when wind volume is used as an in-
put feature and SVM is used as a classification model, the
average index values of Pr, Re, F1, and G-mean of T, are
0.9, 0.86, 0.88, and 0.84, respectively. The average index
values of Pr, Re, F1, and G-mean of T, are 0.85, 0.71, 0.77,
and 0.69, respectively. The average index values of Pr, Re,
F1, and G-mean of T3 are 0.77, 0.63, 0.68, and 0.62, respec-
tively. The average index values of Pr, Re, F1, and G-mean
of Ty are 0.68, 0.49, 0.55, and 0.59, respectively. With the
increase in data imbalance, the evaluation index values of the
SVM classification model showed a gradual decline.

Table 1. WAFs results of each model with the feature of wind volume

Algorithm  Parameter T 1> T3 Ty
g 0.241 0.121 0.012  0.321
SVM c 0.1 0.1 0.2 0.2
K RBF RBF RBF RBF
kn 1 1 2 2
KNN Ip 6 4 1 10
My 0.2 0.6 0.6 0.4
DT Mcaf 2 5 5 3

Table 2. Definition of each classification model parameter

Parameter Definition
c Penalty coefficient
g Nuclear parameter
K Kernel function
Nieas The minimum number of samples re-
“ quired for leaf nodes
kn The number of nearest neighbors

Ip Minkowski distance power parameters

My The best segmentation ratio of features
Ti T-1
1.0 1.0
08 [+] % 0.8
2 &
0.6 |f_!j 04
Re F1 G-mean Pr Re FI G-mean
09
i B
03
Pr Re FI G-mean Pr  Re Fl G-mean
10 1.0
08 @ % % 0.8
0.6
=
Pr Re F1 G-mean Pr Re F1 G-mean

thure 3. Evaluation indices of each model with the feature of wind volume under the imbalanced data
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Compared with experiment 77 (data unbalance ratio 2:1)
and experiment 7 (data unbalance ratio 20:1), the Pr, Re,
F1, and G-mean values decreased by 22, 38, 33, and 25%,
respectively. Evaluation indices of KNN and DT classifica-
tion models show the same trend as SVM, Pr, Re, F1, and
G-mean values of experiment 7 in the KNN model de-
creased by 22, 37, 32, and 29%, respectively, compared with
experiment 7. In the DT model, the Pr, Re, F1, and G-mean
values of experiment T4 decreased by 13, 28, 23, and 27%,
respectively, compared with experiment 77.

It can be seen that unbalanced data significantly affects
the overall performance of the model, resulting in a reduced
index score. Furthermore, unbalanced data leads to more
missed judgments and incorrect predictions in each model.

3.1.2. The result of WAFs diagnosis of the wind
pressure characteristic

The best hyperparameters of each experimental model
under wind pressure characteristics are shown in Table 3, and
the definitions of each parameter are shown in Table 2.
WAFs diagnosis evaluation indexes of three machine learn-
ing algorithms are shown in Figure 4.

T,
1.0} .
@ % B o =
0.6 I__:fl =3 e
0.6 Pr Re F1 G-mean 04 Pr Re F1 G-mean
1.0
Z @ OAS
0.8
H P
Re Fl G-mean 04 Pr Re Fl G-mean
1.0
gﬂ % i
06 = T
Re F1 G-mean Re F1 G-mean

Table 3. WAFs results of each model with the feature of wind

pressure
Algorithm  Parameter Th T 15 Ty
g 0.12 0.154 0.35 0.51
SVM c 0.1 0.1 0.02 0.1
K RBF RBF RBF RBF
kn 2 1 2 3
KNN Ip 6 4 5 10
My 0.2 0.3 1.2 0.4
DT Nleqf 2 5 3 3

As shown in Figure 4, with wind pressure as the input
feature, the Pr, Re, F1, and G-mean values of T4 decreased
by 27, 30, 28, and 30%, respectively, compared to experi-
ment 7, using the SVM algorithm. The Pr, Re, F1, and
G-mean values of T4 decreased by 29, 25, 27, and 29%,
respectively, using the KNN algorithm. The Pr, Re, F1, and
G-mean values of T4 decreased by 25, 23, 28, and 27%,
respectively, using the DT algorithm. This indicates that
the WAFs diagnosis results, which use wind pressure as the
input feature, are also affected by the degree of
sample imbalance.

T} T,
1.0 08
0.8
0.6é ﬁ é E‘%i 0.6
0.4 04 — =
Re F1 G-mean Pr Re FIl G-mean
1.0 1.0
08 ; 0.8
0.6
‘3= 88
" Pr Re FIl G-mean Pr  Re Fl G-mean
1.0 1.0
0.8
é@@@w
0.4
Pr  Re FIl G-mean Pr  Re F1 G-mean

thure 4. Evaluation indices of each model with the feature of wind pressure under the imbalanced data

Compared with the indices of each model under the
cha-racteristics of wind pressure, it can be seen that
the indices under the characteristics of wind volume
are lower, indica-ting that the characteristics of wind
volume are more suitable for the WAFs diagnosis of the
mine ventilation system.

To sum up, the conventional machine learning classifi-
er builds a model based on the rules derived from a large
amount of data, while ignoring the characteristics of data
from other branches. As a result, it is easy to misdiagnose
the faults of other branches as the branches of the
majority class during classification. As the imbalance ratio
increases, the proportion of fault samples that are
misjudged gradually increases. If the fault branch is
misidentified as another branch, the optimal maintenance
time for the mine ventilation tunnel will be missed.
This further illustrates the harm of unbalanced samples
to the WAFs diagnosis model. The research is both neces-
sary and practical.

76

3.2. Large mine test
3.2.1. WAFs data preparation

Taking the ventilation system of Dongshan coal mine as
an example, a diagnosis test is conducted using the unba-
lanced sample WAFs. The ventilation mode of the mine is
diagonal, and the ventilation network of the mine is shown in
Figure 5. The number of branches is 96, the number of nodes
is 84, and the total inlet air volume is 14394 m*/min. The
branches corresponding to the four inlet shafts are e, ei, e23,
and es, respectively. The branch numbers for installing the
damper are ey, ess, eas, es6, e4s, €78, €22, €7, €30, €38, €29, €19,
ecs, €52, ess, and es3. The branch numbers for installing wind
windows are ejo, es3, €4, €13, and eq3. IMVS is used to simu-
late branch faults. These branches of installed structures are
simulated 200 times with faults. The other branches are sim-
ulated with 10 times the faults. A total of 5120 fault samples
are obtained. The data imbalance ratio is 20:1. According to
the experimental results in Section 4.1, wind speed is select-
ed as the input feature of the model in this paper, and some
data are shown in Table 4.



Z. Shen, M. Yan, D. Zhao. (2025). Mining of Mineral Deposits, 19(4), 72-80

Table 4. Fault sample set in the production mine

Samples V'l vh v V' V's v's v V's V' Vie v vz vz via Vs e'i
1 36 56 76 42 39 41 26 104 47 42 32 38 96 42 32  ess

2 36 54 78 41 39 42 24 102 48 42 31 39 95 41 33  ess
201 35 36 79 41 38 71 26 36 47 43 32 80 43 42 31 e33
202 34 35 78 42 37 72 25 37 46 42 31 79 44 42 32 e
5119 65 56 76 44 36 44 26 07 45 43 32 38 05 40 3.1 e
5120 64 56 78 43 36 43 25 06 46 44 33 39 03 42 3.0 exn

Where v'; is the wind speed of each branch (m/s), e'; is the
faulty branch. The fault sample data, after standardized
processing, is divided into training samples and test samples
in a ratio of 7:3.

‘Qf

s Lﬁy}i_ o . ‘3.61 A& ‘. ._"5‘“4 &
/( » L'u.>0 l»:__() .:,‘ N e, »>
O, T Lo, ae 4

7

Figure 5. Ventilation network of Dongshan coal mine

3.2.2. Validation of WGAN-div

To verify the effectiveness of WGAN-div in processing
unbalanced data from the ventilation system, the original
fault samples are processed by the following models:
original data set O, GAN, WGAN, WGAN-gp, and
WGAN-div. This allows for the creation of a combined
sample set, O., to achieve data balance. The Bagging-
ResNet algorithms are then chosen for classification. The
test results are presented in Table 5, which shows the mean
and standard deviation of the results from ten runs (the
optimal results are highlighted in bold).

It can be seen from Table 5 that, compared with the origi-
nal data set, after the enhancement of WGAN-div, ACC
increased by 16.1%, Re increased by 15.8%, Pr increased by
16%, G-mean increased by 15.8%, and F1 increased by
16.2%, respectively. It demonstrates that utilizing the
WGAN-div model to enhance the unbalanced fault data can
effectively improve the quality of the original data and
enhance the discriminant performance of the classifier. After
using GAN, WGAN, and WGAN-GP for data enhancement,
although the accuracy and G-mean indexes are increased, the
classification model’s ability is enhanced; however, there is
no noticeable improvement in F'1.

Table 5. Experimental results of different data enhancement methods

Method ACC Re Pr G-mean Fl
Oin 0.810 £0.012 0.814 £ 0.06 0.811 +£0.102 0.814 +0.071 0.808 £0.12
GAN 0.912 +£0.025 0.910+0.014 0.911 £0.047 0.916 +0.025 0.814 +£0.015
WGAN 0.920 £0.021 0.943 £0.017 0.724 £0.02 0.934 +£0.024 0.813 £0.01
WGAN-gp 0.931 £0.018 0.936 +0.017 0.845 £0.054 0.947 £0.02 0.892 + 0.065
WGAN-div 0.971 £0.006 0.972 £0.121 0.971+0.014 0.972 £0.039 0.97 £0.041

The analysis reveals that the model expands new fault
samples of poor quality, which impacts the classification
model’s ability to discriminate between fault branch diagno-
ses. Compared with GAN, WGAN, and WGAN-gp, the
WGAN-div model has the highest evaluation indexes, and
the scores of ACC, Re, Pr, G-mean, and F1 are 97.1, 97.2,
97.1, 97.1 and 97%, respectively, which significantly im-
proves the classification model’s ability to identify fault
branches. The superiority of the proposed WGAN-div in
processing unbalanced data is verified.

The visualization analysis of the sample generation from
the WGAN-div model is performed by applying the t-SNE
(t-Stochastic Neighbor Embedding) algorithm. Figure 6
shows the distribution between the generated samples and
the real samples of the model for iteration N values of 0, 100,
200, 500, 800, and 1000, respectively. Figure 7 shows the
change in the model loss function.
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N=500 N=800 N=1000

Figure 6. t-SNE dimension reduction data visualization
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Figure 7. WGAN-div loss function

0 100

According to Figures 6 and 7, as the number of iterations
increases, the loss function of the WAGN-div model
converges steadily and becomes stable gradually. The distri-
bution of the generated new sample data and the real data
gradually blends, and the generated data exhibits a high
similarity to the real data, with the quality of the generated
data continually improving.

3.2.3. Validation of Bagging-ResNet

To demonstrate the superiority of Bagging-ResNet, the fol-
lowing classical ensemble learning classification models are
selected for comparison: CBT, LGB, and GBDT. WGAN-div
processes the original sample. In addition, the RF of the venti-
lation system WAFs diagnosis proposed in reference [31] is
also included in the comparative test of this paper. To more
intuitively reflect the advantages and disadvantages of the
classifier, this paper introduces the receiver operating charac-
teristic curve (ROC) and the area under the ROC curve (AUC)
for evaluation. The closer the ROC curve is to the vertical axis,
the larger the AUC value, and the better the classifier’s per-
formance is. If the ROC curve lies below the y =x line, the
classification effect is highly unsatisfactory. The evaluation
indicators of each model are shown in Figure 8. The ROC
curve and AUC values are shown in Figure 9.

It can be seen from Figures 8 and 9 that all evaluation in-
dices of the Bagging-ResNet model are the highest, and the
ROC curve is closer to the vertical axis. From the perspective
of comprehensive evaluation indicators, compared with RF,
CBT, LGB, and GBDT, Re increased by 1, 4.5, 3.2, and 4%,
respectively, Pr increased by 0.8, 4, 3.9, and 5.1%, respec-
tively, G-mean increased by 1.1, 5.2, 2.7, and 4.1%, F1 in-
creased by 1, 4.4, 3.7, and 4.4%, AUC increased by 1.4, 6.4,
4.1, and 3.5%, respectively.
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Figure 8. Evaluation index values of each model
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Figure 9. ROC curve and AUC value of each model

The weak classifiers integrated with RF, CBT, LGB, and
GBDT are shallow networks, and their learning ability is
significantly inferior to that of Bagging-ResNet. In general,
the Bagging-ResNet model is suitable for the diagnosis of
WAFs in mine ventilation systems. The integration of
ResNet with Bagging yields stronger generalization of the
model and better performance than other models in terms of
Re, Pr, G-mean, F'1, and AUC.

3.3. Summary of key findings and future
research directions

The experimental results demonstrate that the proposed
WGAN-div-Bagging-ResNet framework significantly en-
hances the diagnostic performance for windage alteration
faults (WAFs) under imbalanced sample conditions. Com-
pared to conventional machine learning models such as
SVM, KNN, and DT, the integrated approach exhibits supe-
rior robustness and accuracy, particularly as the imbalance
ratio increases. This improvement can be attributed to the
synergistic combination of high-quality data augmentation
and a deep ensemble classifier, which collectively mitigate
the bias toward majority classes and enhance feature learning
from limited fault samples. The superior performance of
WGAN-div over other generative models (GAN, WGAN,
WGAN-gp) lies in its theoretical and structural advantages.
The data generated by WGAN-div blends seamlessly with
real samples, indicating high distributional similarity. This
ensures that the augmented dataset preserves the underlying
physical characteristics of ventilation system faults, thereby
improving the discriminative capability of the classifier.

The proposed method offers a viable solution for real-
world mine ventilation systems, where fault data are often
scarce and unevenly distributed. By effectively balancing the
dataset and enhancing model generalizability, the framework
reduces misdiagnosis and missed alarms. This approach
aligns with the trend toward intelligent ventilation manage-
ment, providing a scalable tool for operational safety in
complex mining environments.

Currently, the fault diagnosis of mine ventilation systems
primarily relies on simulation methods to generate simulated
data for training intelligent diagnostic models. A critical
direction for future research is, therefore, the development of
precise and rapid testing technologies for key ventilation
parameters. Success in this area would enable the collection
of high-fidelity, real-condition datasets. Training intelligent
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diagnostic models on such data would significantly enhance
their accuracy, reliability, and generalization capability for
direct field deployment.

4. Conclusion

A simple T-ventilation network is taken as an example to
illustrate the impact of an unbalanced sample on the WAFs
diagnosis model. The unbalanced data of mine ventilation
system will degrade the classification performance of tradi-
tional machine learning models and even cause failures. The
wind volume characteristic is more suitable for the diagnosis
of mine ventilation systems using WAFs.

Fault diagnosis tests and t-SNE visualization results indi-
cate that the WGAN-div model with residual blocks can
generate high-quality new data, thereby expanding the sam-
ple set. The scores of ACC, Re, Pr, G-mean, and F1 of
WGAN-div are 97.1, 97.2, 97.1, 97.1 and 97%, respectively.
Compared to other data enhancement models, WGAN-div
has more advantages in handling unbalanced samples.

With the help of the Bagging integration idea, the Bagging-
ResNET model is built. By integrating multiple ResNet classi-
fiers, various learning models, including RF, CBT, LGB, and
GBDT, are introduced for comparison with ResNet.The com-
prehensive evaluation index scores of Bagging-ResNet are
more favorable than those of other integrated models.
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Mopaeb MAIIMHHOT0 HABYAHHS JUISA AiaTHOCTUKH BiIXWIEHb ONOPY Y BeHTWIAILIHIN cucTemi
IIAXTH 32 YMOB He302JaHCOBAHUX JAHHUX

3. llen, M. fn, JI. 3ao

Merta. [1inBUIIEHHS TOYHOCTI A1aTHOCTHKH HECIIPABHOCTEH, OB’ A3aHUX 31 3MIHOIO a€pOIMHAMIYHOTO OIOPY Y BEHTHIALIMHUX CUCTEMaX
IIaXT, 32 YMOB He30aJaHCOBAaHUX JAaHUX Ha PO3POOKH iHTEIPOBAHOI METOIMKH, IO ITOEAHYE TeHepaTHBHE OalaHCYBaHHS BHOIPKH Ta aHCAM-
OseBy TMOOKY Kiacudikalliro.

Metonuxka. Ha ocHoBi WGAN-div BUKOHYETHCS IITYYHE PO3IMIHMPCHHS HE30AIaHCOBAHNX JTAHUX 3 METOI0 ¢()EKTUBHOTO 301IBIICHHS 10~
4aTKOBOTO MacHBy. J[11s1 3a0e3neueH s IiarHOCTHKY HeCIIPAaBHOCTEH Y BEHTWIIALIHHIN cHCTeMi iHTerpoBaHO aHcaMbieBuid Meton Bagging ta
rmOoKy HelipoHHY Mepexy ResNet.

PesyabTatu. ChopMoBaHO eKcIIEpUMEHTANIbHI HAOOpH AaHHX 3 Koedinientamu Hesbamancosanocti 1:2, 1:8, 1:10 ta 1:20 Ha npuxaai
npoctoi T-moxioHoi BeHTWIALIITHOT Mepesxi. [leTanbHO mpoaHami30BaHO BIUIMB He30alaHCOBAaHMUX JAHUX HA IIarHOCTHKY BiIXWIEHB OTOpPY
(WAFs) y BeHTWIALIHINA cucTeMi. BUkOHaHO MOPIBHAIBHI €KCIEPUMEHTH 13 3aCTOCYBAaHHSAM PIi3HUX MOeJel 301IbIIeHHS JaHUX Ta MOJe-
neit xmacudikanii 118 BEeHTWHILIHHOT cucteMu maxtu Jlonrmrane /i oniHIOBaHHS €(eKTHBHOCTI MO/l BUKOPHCTAHO HU3KY MOKAa3HU-
KiB, a Tako Bizyamizamito t-SNE. Pe3ynbpraTit mokasyroTs, mo naHi, 3reHepoBani Mojemno WGAN-div, 3 BUCKOMM PiBHEM JOCTOBIPHOCTI
Y3TOKYIOThCS 3 peabHIUMH, IpH 11boMy Yy nopiBHsHHI 3 GAN, WGAN i WGAN-GP moznens WGAN-div 1eMOHCTpy€E Kpallli XapaKTepHc-
THKH, a IPOAYKTUBHICT rMOoKoi Mozeni ResNet Takox cyTTeBO 3pocia.

HaykoBa HoBu3Ha. Y po0OTi BriepIue MpoBeIeHO JOCTIPKEHHs IarHOCTUKN HECIPaBHOCTEH BEHTWIILIHHUX CUCTEM 3a YMOB Hes0aa-
HCOBaHHX JaHUX AK Ha PiBHI CaMUX JTaHWX, TaK 1 Ha PiBHI MepeXeBOi MOZENI, 0 JO3BOJIsIE €PEeKTUBHO PO3B’sA3aTh MpobdiaeMy nucbanancy,
XapaKTepHy A pEaIbHUX YMOB POOOTH BEHTHIILIHHUX CHCTEM ILaXT.

IpakTHyHa 3HAYUMIiCTb. 3aPONOHOBAHHHN IiIX1]] MOXKE CIYTYBaTH TEXHIYHOIO OCHOBOIO JJIS BIIPOBAKEHHSI IHTEJICKTYAIbHUX CUCTEM
BEHTHJISII, ITiIBUIYIOYH HAIii{HICTh MOHITOPHHTY Ta 3arallbHAN piBeHb O€3MEeKN BEHTHIISAIIIHUX CHCTEM IIaXT.

Kniouosi cnosa: éenmunsyitina cucmema waxmu, OiaeHOCMUKA HeCnpagHoCcmel, He30anaHco8ani Oawi, 2eHepamusHO-3MAa2aibHa
mepedica, Bagging-ResNet
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