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Abstract 

Purpose. In the open-pit mining, monitoring slope failure is a crucial activity. Many mining projects used a manual ap-

proach to measure the slope displacement, but an advanced technology (e.g., slope stability radar) offers more precise data 

collection. Despite these technological strides, accurately predicting slope failure remains essential to prevent costly incidents 

and interrupted production. Simple linear regression is commonly and widely used with time on the x-axis and inverse-velocity 

on y-axis, is a prevalent method. However, it often fails to forecast slope failure accurately, as the events tend to occur sooner 

than predicted. This misprediction might be attributed to the oversight of error-term within the model. 

Methods. The error-term distinct structure was analyzed to improve the accuracy of the existing linear regression model. 

To address this, copula models were employed, as they effectively capture the complex dependence patterns among random 

variables, providing a robust method for incorporating the error-term analysis into the model. 

Findings. The proposed approach showed its powerful technique to predict slope failure more accurately than the existing 

simple linear regression model. According to the slope failure datasets, the linear regression model was y = 50475.270 – 1.123 x. 

Furthermore, the error-term was modeled through Reversed Gumbel-Hougaard (GH-RR) copula model under parameter 

θ = 1.12. As a result, the prediction missed by 86.4 seconds, compared to 277.284 seconds when using the existing approach 

(i.e., linear regression without copula-based error-term modeling). 

Originality. This approach emphasizes the analysis and incorporation of the error-term in the model, which is often over-

looked in the simple linear regression method commonly used. 

Practical implications. Implementing the error-term copula-based model could significantly improve the accuracy of slope 

failure predictions, thereby preventing costly incidents and ensuring uninterrupted production in mining projects. 
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1. Introduction 

Slopes failure prediction is a crucial aspect in the mining 

industry. Displacements of land surface in natural and man-

made slopes are considered as the source of potential envi-

ronmental risks, including the man-made ones, which often 

result in emergencies or disaster [1]. Landslides occur when 

masses of rocks, soil material, or muddy flow move down a 

slope, caused by disturbances in the natural stability of a 

slope [2]. The prediction plays a crucial role to ensure the 

safety and operation stability of open-pit mines [3], [4]. Over 

the years, various methods have been developed and em-

ployed for this purpose. Inverse-velocity method proposed 

by Fukuzono [5] is commonly used in slope failure predic-

tion. He utilized a relationship between inverse of the slope 

displacement velocity, i.e., inverse-velocity, (y-axis), and 

time (x-axis), where the failure is expected when the inverse-

velocity reaches zero 
1

0
v

 
= 

 
.  

Fukuzono’s method has been validated by numerous 
applications, demonstrating its reliability and effectiveness 
in predicting slope failures in the open-pit mining industry. 
The method is valuable due to not only its reliability and 
effectiveness [6], but also its simplicity, clear algorithm, 
and relatively easy to understand. Furthermore, the use of 
continuous monitoring and including updated data in the 
analysis are highly recommended on using this method to 
ensure the effectiveness [7]. 

However, while the inverse-velocity method by Fukuzo-

no [3] looks promising, it relies on certain assumptions and 

may not fully account for the uncertainty, which is often 

observed in real-world data. The model assumes slope failure 

follows a linear trend and assumes the error-term is ignored 

in the prediction analysis. This oversight can lead to inaccu-

racies. Thus, Rose and Hungr [8], as well as Carlà, 

Intrieri [7], recommend conducting regular time-window 

updates in the model to maintain the model accuracy. 
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Despite these efforts, the continuous monitoring and 

time-window updates, failures may still occur sooner than 

anticipated. This inaccuracy might be due to the non-linear 

trend or the underestimated error-term presence [9]. On the 

other hand, the error-term, somehow, is one of the uncertain-

ties in the regression model that is barely incorporated into 

the analysis, whether it is a linear or non-linear model. 

Given that the uncertainty cannot be eliminated and accu-

rately predicted, several papers proposed approaches to mod-

el the uncertainties in the slope failure prediction. Based on 

the literatures, the proposed approaches can be classified into 

three categories namely: 

– incorporating probability concept such as Monte-

Carlo simulation (MCS) [10]-[12] and bootstrapping proce-

dure [13], [14]; 

– modeling the variation through copulas [15], [16] and 

stochastic approaches [17], [18]; 

– the combination of both. 

The utilization of copulas in the slope failure prediction is 

quite new and limited. Zhou, Jing [15] incorporated a copula 

model in the Generalized F discrepancy minimization tech-

nology to understand the correlation between several ge-

otechnical parameters. Xu and Zhou [16] compared copulas 

with regular risk assessment technique (MCS). 

Copulas are considered powerful statistical analysis due 

to their ability to capture the dependence pattern between 

multiple random variables. Unlike traditional methods that 

often assume normally distributed error-terms, copulas allow 

for modeling different types of probability distributions [19]. 

This flexibility makes them useful for capturing complex 

relationships and dependences in a dataset. In other words, 

by using copulas, one can accurately describe the joint 

distribution of variables and handle heteroscedasticity, 

which is the condition of having non-constant variability in 

a dataset. Thus, implementing copula methods can provide 

a more rational statistical model where unexplained vari-

ances are taken into account. 

A research to enhance the inverse-velocity theory by in-

corporating a probability concept was conducted by Manconi 

and Giordan [20]. The proposed method was enriching the 

regression model by applying bootstrap procedure to add 

confidence interval in the model. Bootstrapping, a resampling 

technique, allows for estimation of the sampling distribution 

of a static by repeatedly sampling with replacement data. By 

applying bootstrapping, they were able to construct confi-

dence interval for their model parameters. In addition, the 

proposed approach by Manconi and Giordan [20] demon-

strated a significant advancement in the application of in-

verse-velocity method. In short, the proposed technique 

shows a convenience, intuitive, and robustness. 

Another regression enhancement was also conducted by 

Li, Xu [21], who explored the integration of a linear ensem-

ble-based extreme learning machine and copulas within an 

autoregressive moving average (ARMA) model. The copulas 

used in the model were applied to capture the variation in the 

random variables of the displacement, reservoir water level, 

and the precipitation. As a result, Gumbel-Hougaard showed 

the best performance based on the Akaike Information Crite-

rion (AIC) and the Bayesian Information Criterion (BIC) 

number. These criteria are widely used for model selection, 

with lower values indicating a better fit to the data. The supe-

rior performance of the Gumbel-Hougaard highlighted its 

ability to capture the tail dependences and the asymmetrical 

nature of the relationship among variables. 

On the other hand, the use of a linear ensemble-based ex-

treme learning was due to its ability on fast-learning speed 

and high generalization performance. The model was suitable 

for complex trends and non-linearity of the datasets. By 

combining copulas and linear ensemble-based extreme learn-

ing, Li, Xu [21] successfully developed a robust and efficient 

approach to model the stochastic nature of the slope failure, 

especially in terms of capturing the dependence patterns of 

the random variables. 

Currently, copulas are increasingly recognized as a vital 

tool in risk assessment and statistical modeling due to their 

ability to capture the dependence structure between random 

variables, regardless of the complexity of their 

relationship [22]. This feature makes copulas valuable in 

cases where traditional correlation measures (e.g., Pearson 

and Spearman correlation) are insufficient. Al-Harthy, 

Begg [23] observed the efficacy of copula in modeling de-

pendences that are not easily modeled by linear correlations. 

In another intensive application, Singh, Ardian [24] uti-

lized copulas to model heteroscedasticity within a fractional-

ly integrated moving average autoregressive model of a ge-

neralized autoregressive time series model with conditional 

heteroscedasticity (ARFIMA-GARCH). The ARFIMA itself 

is suitable for capturing long memory properties in time 

series data, while the GARCH component accounts for vola-

tility over time. By integrating copulas into ARFIMA-

GARCH model, Singh, Ardian [24] aimed to better represent 

the stochastic dependences and co-movements among ran-

dom variables, which are critical for model accuracy in the 

forecasting and risk analysis.  

In general, uncertainty in the regression model can be 

modeled by two techniques: 

– minimizing the error-term based on historical data 

through statistical techniques (e.g., ARMA, ARFIMA,  

and regression); 

– capturing variation through simulation techniques  

(e.g., Monte-Carlo, bootstrapping, and stochastic processes). 

The statistical technique typically involves developing 

models that seek to minimize the discrepancy between ob-

served values and the predicted values. This is often achieved 

by fitting a model to the historical data and optimizing the 

parameters to reduce the error-term, where ordinary least 

square (OLS) algorithm is commonly used. In contrast, the 

simulation techniques encompass methods that aim to repli-

cate the underlying stochastic nature of generating the data. 

The simulation is useful for quantifying the uncertainty in 

complex systems where analytical solutions may be intracta-

ble. This paper, thus, focuses on improving the regression 

model (i.e., statistical approach) by modeling the error-term 

variation through copula (i.e., simulation approach). 

Eventually, slope failure prediction is a critical compo-

nent in geotechnical engineering, directly impacting the 

safety and reliability of the operation, especially in the mi-

ning industry. Traditional methods for slope failure predic-

tion often rely on oversimplification assumptions, especially 

about the dependence relationship among random variables, 

which limit the accuracy and the reliability of the model. To 

address these limitations, this research, thus, proposes an 

innovative approach. The proposed approach employs error-

term simulation modeling through a copula method to en-
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hance the existing methodologies for slope failure prediction. 

By employing copulas, the complex relationship and de-

pendences inherent in geotechnical data, leading to more 

precise and reliable risk assessment, can be better captured. 

In addition, the proposed technique can potentially benefit 

decision makers in slope failure risk profiling. 

2. Methods 

2.1. Simple linear regression 

The common simple linear regression, where the inverse-

velocity and the time are the y-axis and x-axis, respectively, 

was still used to forecast the slope failure in this research. 

The linear regression was then enhanced by modeling the 

error-term through a best fitted copula, regardless of its error-

term variation (i.e., homoscedasticity or heteroscedasticity). 

The linear regression itself is expressed by Equation (1) 

where y is the dependent variable (inverse-velocity), a is the 

intercept, β is the slope, x is the independent variable (time), 

and ε is the error-term: 

y a x = + + ;               (1) 

( )

( )

,Cov x y

Var x
 = ;               (2) 

( )( )a y x= − .               (3) 

The β and α can be calculated using the ordinary least 

square (OLS) algorithm, which follows Equations (2) and 

(3), respectively. The OLS algorithm ensures that the esti-

mates of β and α result in the lowest possible value of the 

summation of squared error (i.e., minimizing error). How-

ever, this method typically assumes that the error-term (ε) is 

random and cannot be predicted and commonly ignored in 

the model. These assumptions can be problematic, especially 

in the presence of heteroscedasticity. 

2.2. Error-term variation modeling 

through copula-based modeling 

One important assumption in the regression model is the 

homoscedasticity, while the error-term is purely random and 

exhibits perfectly constant variance across all levels of the 

independent variables. Despite its importance, achieving that 

ideal condition in practical application is rare. This violation 

of the homoscedasticity assumption can result in inefficient 

estimators and biased standard errors, which furthermore can 

compromise the reliability of the model and its confidence 

intervals [25]. The presence of heteroscedasticity might come 

from several sources such as outliers, omission of relevant 

variables [26], measurement errors [27], and so on. These 

factors result in non-constant variance of the error-term, 

complicating the modeling process. In addressing heterosce-

dasticity, copula-based models offer a robust solution. Copulas 

enable capturing dependences within the dataset. By modeling 

the joint distribution of variables separately from their margin-

al distributions, copulas can effectively account for the varying 

relationship and dependences that contribute to heteroscedas-

ticity. In addition, if the model is homoscedasticity, copulas 

can still be used as effectively as in heteroscedastic cases. 

2.3. Copulas model and the parameter estimation 

Copula is mathematically defined as a joint distribution 

function model of the uniformly distributed [0, 1] random 

variables that has a unique dependence pattern based on its 

correlation described by its parameter [28], [29]. Mathemati-

cally, let H be a joint distribution function for F and G, the 

F(x) and G(y) are the margin distribution of F and G, then 

copula C is defined as H (x, y) = C (F(x), G(y)). Regardless 

of the marginal distribution, copulas are classified by class 

and family based on its generator and parameter [29]. How-

ever, in this research, the family of Clayton, Gumbel-

Hougaard (GH), and Frank copulas within the class of  

Archimedean copula were explored due to its simplicity and 

common patterns. 

The simplicity is due to its relatively simple model con-

struction and parameter estimation (θ) through Kendall’s tau 

(τ) correlation model. The τ and the θ for Clayton, GH, and 

Frank can be calculated by Equations (4), (5), (6), and (7), 

respectively [30]-[32]: 

( )
( )

2

1

c dn n

n n


−
=

−
;               (4) 

2

1





=

−
;                (5) 

1

1



=

−
;                (6) 

( )1 1 1

4

D  



− −
= ,              (7) 

where: 

D1(θ) – the Debye first-order function that follows Eq. (8): 

( )
( )0

1

exp 1
k

t
D dt

t





= 

−
.            (8) 

Subsequently, the copulas model can be constructed 

based on its families, the Clayton, GH, and the Frank that 

follow Equations (9), (10), and (11), respectively: 

( )
1

max 1, 0C u v  
−

− − = + −
  

;           (9) 

( ) ( )

1

exp ln lnC u v
  

 
  = − − + −

    
 

;        (10) 

( )( ) ( )( )
( )

exp 1 exp 11
ln 1

exp 1

u v
C

 

 

 − − − −
 = − +
 − −
 

.     (11) 

Another Archimedean dominance application is due to 

the pattern produced. The patterns cover three common scat-

terplot patterns:  

– the tight pattern at the beginning and more disperse af-

terwards; 

– disperse at the beginning and tighter afterwards; 

– relatively uniform pattern for both at the beginning and 

at the end. In addition, the modification of each of those 

families is also simply done by reflecting the model [33]. 

Figures 1, 2, and 3 show the pattern of each family of Ar-

chimedean copula and its reflection, respectively. 

The Clayton copula pattern is tight at the beginning and 

disperses afterwards. Nevertheless, the Clayton copula can 

be reflected by three more reflection axis: 

– reflecting to its y-axis;  

– reflecting to its x-axis; 

– reflecting to its both axis, the x-axis and y-axis [33]. 
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(a) (b) 

  

(c) (d) 

  

Figure 1. Clayton copula dependence pattern: (a) Clayton (C); 

(b) Clayton RY (C-RY); (c) Clayton RX (C-RX); 

(d) reversed Clayton (C-RR) 

 

(a) (b) 

  

(c) (d) 

  

Figure 2. Gumbel-Hougaard (GH) copula dependence pattern: 

(a) Gumbel-Hougaard (GH); (b) Gumbel-Hougaard RY 

(GH-RY); (c) Gumbel-Hougaard RX (GH-RX); 

(d) reversed Gumbel-Hougaard (GH-RR) 

 

(a) (b) 

  

Figure 3. Frank copula dependence pattern: (a) Frank (F); 

(b) Frank RX (F-RX) 

 

This reflection concept obviously expands the possibility 

of copula application. The GH copula reflection concept is 

similar to Clayton reflection concept. It can be reflected to its 

x-axis, y-axis, and both. However, instead of being dispersed 

at the tail, GH tail becomes tight. The dispersion happens in 

the middle (body). 

Both, Clayton and GH, have tight head and tail. Frank co-

pula, on the other hand, has relatively dispersed head and tail. 

Therefore, the Frank copula can only be reflected on its x-axis. 

Frank copula reflection on the y-axis or on both axis results in 

an identical pattern with RX and regular copula, respectively. 

The mathematical model for reflected Archimedean 

copulas is constructed based on Equations (12), (13), and 

(14) for the reflection of a regular copula pattern on its  

x-axis, y-axis, and both axes, respectively [34]. Note that the 

Frank copula has a symmetrical pattern, thus it may only be 

reflected on its x-axis. Thus, focusing on just three families 

of Archimedean copula and its modification, ten different 

common error-term patterns can be modeled: 

1

u u

v v

→


→ −
;              (12) 

1u u

v v

→ −


→
;              (13) 

1u u

v v v

→ −


→ −
.              (14) 

The application of copulas requires transforming the  

x and y dataset into Uniform distribution range [0, 1] for u 

and v, respectively. 

2.4. Copula simulation through MCS algorithm 

Construction of the copula dependence model for x and y 

using the previous steps is insufficient to show the risk profile. 

A copula simulation through MCS algorithm is then proposed. 

The copula MCS was discussed by Mari and Kotz [35], Al-

Harthy, Begg [23], and Ardian and Kumral [36]. The Clayton 

and Frank copulas have the same algorithm, as shown below. 

Let u and w are random variables [0, 1]. Reformulate Archi-

medean copula function as ( ) ( )1v w u  −  = −  . Simulate 

Clayton and Frank by Equations (15) and (16), respectively: 

( ) ( )

1

1 1Claytonv w u u
  


−
− − −
+

 
= − + 
  

;       (15) 

( )( )

( )( )( )1

1 exp1
ln 1

1 exp 1
Frankv

u w



  −

 
− − 

= − − 
+ − − 

 

.      (16) 

However, the GH copula has no closed form. The GH si-

mulation is based on the following algorithm. Let the variable 

s ranges randomly [0, 1] and variable q – consecutively [0, 1]. 

Simulate GH by finding u and v by Equations (17) and (18). 

( )1exp lnu s q =
 

;            (17) 

( ) ( )1exp 1 lnv s q = −
  

.          (18) 

Using algorithms, find u and v for three copulas. Eventually, 

a back transformation must be done to return the copula simula-

tion into its initial distribution, as well as to its initial unit. 

2.5. Model selection 

In this research, Akaike information criterion (AIC) was 

used to select the best model [37]. The AIC was used to 

select the best copula and distribution fitting [38]. The model 
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with the lowest AIC value is considered as the best model. 

The AIC follows Equation (19): 

max
2

2ln
1

n
AIC k L

n k

 
= −     

− − 
,         (19) 

where: 

n – the sample size; 

k – the number of parameters; 

ln [Lmax] – the maximized value of log-likelihood. 

Although the lowest AIC number is considered as the 

best model, the second or other lowest number might be used 

due to its intuitive consideration [33]. 

2.6. The proposed technique algorithm 

In order to show the steps of the proposed approach, an 

algorithm of the proposed approach in this paper is explained 

subsequently. First of all, when conducting the proposed 

approach, a simple linear regression was done based on the 

given dataset. The dataset was the velocity and the time to 

failure. Note that, the velocity is the y-axis, but it is inversed, 

whereas the time is the x-axis. Next step was to build the 

linear regression model, and the model can be seen in Equa-

tion (1). When constructing a linear regression model, the 

slope and intercept must be estimated in advance. The slope 

and intercept estimation through the OLS estimator follow 

Equations (2) and (3), respectively. 

Second, perform the error-term modeling. The error-term 

modeling was done through copula. The error-term dataset 

was gathered from calculating the difference between ob-

served value (i.e., historical data) and the predicted value 

which was obtained from the previous step (i.e., the simple 

linear regression). Next, the rank correlation of the error-terms 

was estimated by Equation (4). After that, the copula parame-

ters were estimated by Equations 5), (6), and (7), respectively. 

Third, the error-term was fitted into one of the Archimede-

an copulas by conducting the AIC method in Equation (9) 

before copula simulation could be done. After selecting the best 

copula, the copula simulation was done by following Equations 

(9), (10), or (11), for Clayton, GH, and Frank, respectively. The 

simulation used MCS algorithm to reproduce the error-term. 

Clayton and Frank simulation follows Equations (15) and (16), 

respectively. The GH follows Equations (17) and (18). 

Finally, the reproduced error-terms were incorporated in-

to the linear regression model in Equation (1). In other 

words, the scatterplot of inversed-velocity vs time was also 

reproduced. Assuming that the inversed velocity is less than 

or equal to 0 on x-axis 
1

0
v

 
 

 
 as the slope failure time, thus 

all the reproductions 
1

0
v

 
 

 
 were thus fitted into probabi-

lity distribution to show the slope failure risk profile. 

3. Results 

3.1. Simple linear regression modeling 

The slope failure dataset (the time and velocity) was ob-

tained from coal mine in Indonesia and provided by Ground-

Probe. GroundProbe is a real-time geo-hazard measuring and 

monitoring company. The dataset was modeled by simple 

linear regression in Equation (1). The scatterplot and the 

corresponding linear regression model of the dataset can be 

seen in Figure 4. The scatterplot illustrates the distribution 

of data points, highlighting the trend, and variability in the 

measurements. The imposed linear regression on the scat-

terplot represents the best-fit line that minimizes the sum of 

squared errors. 

 

 

Figure 4. The scatterplot and the linear regression of the dataset 

 

Based on Figure 4, there were 42 datasets, collected over 

a time interval starting from t = 44941.136 hours until the 

point of failure at t = 44941.355 hours. It means that there 

was duration of 0.219 hours or 13.113 minutes or 786.791 

seconds from the initial observation to the occurrence of the 

actual slope failure. The linear regression model applied to 

this dataset was defined by equation y = 50475.270 – 1.123 x. 

According to the model, the failure was predicted to happen 

in t = 44941.432. Comparing this predicted time with the 

actual failure time, a discrepancy of 277.284 seconds (4.621 

minutes) was observed. 

This analysis underscores the efficacy of linear regression 

in approximating the time of slope failure, but the discrepan-

cy should be kept in mind. The 4.621 minutes difference 

between the predicted and actual failure times highlighted the 

uncertainty in predictive modeling of geotechnical phenome-

na. Nevertheless, the application of a linear regression model 

still provides valuable insights to the decision makers. 

3.2. Error-term modeling 

The error-terms were derived from the 42 observed data 

points and their corresponding predicted values – representing 

the residuals or the difference between observed and predicted 

values – were subjected to further statistical examination. To 

model the dependence pattern of these residuals (i.e., error-

terms), Archimedean copulas were employed. The selection 

of the most appropriate copula model was done through the 

AIC method using Equation (19). Among the evaluated cop-

ulas, the Reversed GH (GH-RR) was chosen. The top three 

AIC values for each copula are summarized in Table 1. 

 
Table 1. The AIC value for each Archimedean copula 

Name AIC 

Reversed Gumbel-Hougaard (GH-RR) 2.35 

Clayton (C) 2.48 

Frank (F) 3.48 

 

In the process of simulating the GH-RR, it was essential 

to estimate the copula parameter θ using Equation (6). The 

estimation of θ required the prior calculation of Kendall’s tau 
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(τ), which was derived from the error-terms and using Equa-

tion (4). Once the τ was estimated, it could be substituted into 

Equation (6) for copula parameter estimation process 

(θ = 1.12). The next step involved using Equations (17) and 

(18) to reproduce (or simulate) u and v, respectively. The 

10000 reproduction of the error-terms was conducted. 

To evaluate the performance of the GH-RR copula simu-

lation, a comparison between actual error-terms and the re-

production through GH-RR is presented in Figure 5. Such a 

visual representation provides an intuitive understanding of 

how well the copula model replicates the observed error-term 

dependence pattern. 

 

 

Figure 5. The scatterplot of the error-term 

 

Based on Figure 5, the scatterplot illustrates the distribu-

tion of the actual error-terms (represented by square dots) 

alongside the GH-RR simulated error-terms (represented by 

grey dots). Upon examination, it was evident that the simu-

lated error-terms effectively covered the actual error-terms, 

indicating a high degree of a reliability of the GH-RR copula 

model in capturing the error-terms in the slope failure linear 

regression model. 

This congruence between the simulated and actual error-

terms underscores the robustness of the GH-RR copula mo-

del in modeling the error-term behavior. The ability to repro-

duce the observed error-terms through simulation provided 

confidence in the application of this model to real-world 

data. Such reliability was crucial, as it validated the GH-RR 

copula potential to accurately reflect the stochastic nature of 

error-terms, which were often neglected in traditional linear 

regression analysis. 

To further assess the utility of the GH-RR simulation, 

these simulated error-terms were incorporated into the exis-

ting linear regression model. This step aimed to evaluate the 

model predictive accuracy concerning slope failure, particu-

larly when the error-terms were accounted for in the analysis. 

In contrast, traditionally, the error-terms were either simpli-

fied or even ignored, which potentially led to an incomplete 

understanding of the model predictive capacity. Moreover, 

the incorporation of the simulated error-terms into the regres-

sion model allowed for a more comprehensive evaluation of 

its performance. The model provided a more nuanced and 

accurate prediction of slope failure, enhancing its practical 

applicability and management context (i.e., decision making 

process). The GH-RR simulated error-term incorporation can 

be seen in Figure 6. 

 

 

Figure 6. The incorporation of the GH-RR simulated error-term 

 

Figure 6 presents the linear regression of the slope failure 

model (represented by black linear line) together with its 

actual dataset (represented by black circles) and the GH-RR 

simulated error-term (represented by grey dots). More than 

that, the rectangular dashed lines area highlights the error-

terms that exceeded a critical threshold (i.e., 1/v = 0). The 

grey dots within the rectangular dashed lines area are the 

variation of the slope failure prediction under error-term 

copula-based modeling. 

Following the identification of predicted slope failure oc-

currences and using error-term copula-based modeling in 

Figure 6, the next step was fitting those predictions into the 

probability distribution function to display the possibility of 

the slope failure occurrence. Utilizing the probability distri-

bution function made the model more realistic due to its 

probability framework, instead of a deterministic one. The 

AIC method was also used in the process of fitting the distri-

bution to select the best probability distribution function. The 

AIC values for those distributions are presented in Table 2. 

 
Table 2. The AIC value of the error-term within the rectangular 

dashed lines 

Name AIC 

Ext-Value-Max -4185.78 

Gamma -4099.99 

Normal -4049.54 

 

Table 2 shows the AIC value of the three probability dis-

tribution functions. The AIC values of the Ext-Value-Max, 

Gamma, and Normal distribution were -4185.78; -4099.99; 

and -4049.54, respectively. The Ext-Value-Max shows the 

lowest and significantly differs from the other distributions. 

Therefore, the Ext-Value-Max distribution was chosen. 

3.3. Slope failure risk profiling 

Determining the slope failure at one specific time is too 

risky due to ignoring the uncertainty that might be involved 

in the slope failure occurrences. Using the probability con-

cept – where a range of slope failure time was provided – 

made this proposed approach more rational. The Ext-Value-

Max in this case was selected and fitted together with the 

actual time of slope failure and the predicted time as can be 

seen in Figure 7. The probability distribution function of the 

Ext-Value-Max distribution (represented by red line) was 

fitted to the simulated error-term with the parameters a and 

b, 44941.375 and 0.021, respectively. 
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Figure 7. The slope failure profile 

 

The blue line shows the actual time of slope failure, 

which occurred at t = 44941.355. The green line represents 

the slope failure prediction by linear regression, which 

estimated the failure time at t = 44941.432. In addition, 

according to Ext-Value-Max distribution, the minimal, 

maximal, and the mode were 44941.322, 44941.453, and 

44941.379, respectively. 

In other words, it has been shown that the proposed 

model predicted the slope failure, which occurred between 

t = 44941.322 (the minimal) to t = 44941.453 (the maximal), 

with the high probability to happen at t = 44941.379. 

Assuming that the mode is the recommended one, the 

proposed model (i.e., copula-based error-term modeling) was 

wrong by 0.024 hours (or 86.4 seconds), whereas the 

conventional linear regression exhibited a higher 

misprediction of 0.077 hours (277.284 seconds). 

The comparison between the actual time, the proposed 

approach, and the conventional model proved that the predictive 

capability offered by the proposed approach was not only more 

powerful than the conventional one, but also might show the 

slope failure occurrence possibility through a specified 

continuous probability distribution function. Thus, instead of 

using a simple linear regression alone, incorporating the error-

term copula-based modeling enhanced the existing model. The 

model benefits from a more comprehensive framework that 

accounts for stochastic variability in real-world cases. 

4. Conclusions 

In geotechnical engineering, a simple linear regression 

stands as a prevalent and extensively employed tool for fore-

casting slope failures, particularly within the mining industry. 

The method is generally reliable, but often predicts slope 

failures occurring later than their actual timing. Such discrep-

ancies underline the oversight of the error-term, which has a 

unique pattern, but is commonly ignored in the analysis. 

Incorporating error-term copula-based modeling shows a 

significant advancement over relying solely on conventional 

linear regression models. Copula models offer a more nuanced 

approach by capturing the complex interdependencies within 

the error-term structure. This capability allows the error-term 

copula-based modeling approach to provide more accurate 

predictions of slope failure timings compared to the simplistic 

assumptions of linear regression. In addition, the probabilistic 

framework in the proposed approach makes it more realistic. 

Author contributions 

Conceptualization: BD, VV; Data curation: SS, RS; 

Formal analysis: ÖU, AA; Funding acquisition: AA; Inves-

tigation: VV, RS; Methodology: BD, ÖU; Project admin-

istration: VV; Software: VV, AA; Supervision: BD, SS; 

Validation: BD, SS; Visualization: VV, RS; Writing – orig-

inal draft: VV, AA; Writing – review & editing: BD, AA. 

All authors have read and agreed to the published version 

of the manuscript. 

Funding 

This research was supported financially by internal  

research grant of Universitas Pembangunan Nasional “Vete-

ran” Yogyakarta (LPPM – UPN “Veteran” Yogyakarta) and 

PT Studio Mineral Batubara. 

Conflicts of interests 

The authors declare no conflict of interest. 

Data availability statement 

The original contributions presented in the study are  

included in the article, further inquiries can be directed to the 

corresponding author. 

References 

[1] Kovrov, O., Kolesnyk, V., & Buchavyi, Y. (2020). Development of the 

landslide risk classification for natural and man-made slopes based on 

soil watering and deformation extent. Mining of Mineral Deposits, 
14(4), 105-112. https://doi.org/10.33271/mining14.04.105 

[2] Boubazine, L., Boumazbeur, A., Hadji, R., & Fares, K. (2022). Slope 

failure characterization: A joint multi-geophysical and geotechnical ana-
lysis, case study of Babor Mountains range, NE Algeria. Mining of Mi-

neral Deposits, 16(4), 65-70. https://doi.org/10.33271/mining16.04.065 

[3] Kolapo, P., Oniyide, G.O., Said, K.O., Lawal, A.I., Onifade, M., & 
Munemo, P. (2022). An overview of slope failure in mining operations. 

Mining, 2(2), 350-384. https://doi.org/10.3390/mining2020019 
[4] Yu, S., Ke, Y., Deng, H., Tian, G., & Deng, J. (2021). Experimental 

investigation of porous and mechanical characteristics of single-crack 

rock-like material under freeze-thaw weathering. Minerals, 11(12), 
1318. https://doi.org/10.3390/min11121318 

[5] Fukuzono, T. (1985). A method to predict the time of slope failure caused 

by rainfall using the inverse number of velocity of surface displace-
ment. Landslides, 22(2), 8-13. https://doi.org/10.3313/jls1964.22.2_8 

[6] Cabrejo, A. (2021). Failures in open-pit mines and uncertainty when 

predicting collapses. GroundProbe, 1-9. 
[7] Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., & Casagli, N. 

(2017). Guidelines on the use of inverse velocity method as a tool for set-

ting alarm thresholds and forecasting landslides and structure collapses. 
Landslides, 14, 517-534. https://doi.org/10.1007/s10346-016-0731-5 

[8] Rose, N.D., & Hungr, O. (2007). Forecasting potential rock slope 

failure in open pit mines using the inverse-velocity method. Interna-
tional Journal of Rock Mechanics and Mining Sciences, 44(2), 308-320. 

https://doi.org/10.1016/j.ijrmms.2006.07.014 

[9] Zhang, J., Yao, H. Z., Wang, Z. P., Xue, Y. D., & Zhang, L. L. (2023). On 
prediction of slope failure time with the inverse velocity method. Georisk: 

Assessment and Management of Risk for Engineered Systems and Geo-

hazards, 17(1), 114-126. https://doi.org/10.1080/17499518.2022.2132263 
[10] Wu, Y., & Lan, H. (2019). Landslide analyst – A landslide propagation 

model considering block size heterogeneity. Landslides, 16(6), 1107-

1120. https://doi.org/10.1007/s10346-019-01154-2 
[11] Li, D.Q., Zhang, F.P., Cao, Z.J., Zhou, W., Phoon, K.K., & Zhou, C.B. 

(2015). Efficient reliability updating of slope stability by reweighting fai-

lure samples generated by Monte Carlo simulation. Computers and 
Geotechnics, 69, 588-600. https://doi.org/10.1016/j.compgeo.2015.06.017 

[12] Li, A.J., Cassidy, M.J., Wang, Y., Merifield, R.S., & Lyamin, A.V. 

(2012). Parametric Monte Carlo studies of rock slopes based on the 
Hoek-Brown failure criterion. Computers and Geotechnics, 45, 11-18. 

https://doi.org/10.1016/j.compgeo.2012.05.010 

[13] Li, D.Q., Tang, X.S., & Phoon, K.K. (2015). Bootstrap method for 
characterizing the effect of uncertainty in shear strength parameters on 

https://doi.org/10.33271/mining14.04.105
https://doi.org/10.33271/mining16.04.065
https://doi.org/10.3390/mining2020019
https://doi.org/10.3390/min11121318
https://doi.org/10.3313/jls1964.22.2_8
https://doi.org/10.1007/s10346-016-0731-5
https://doi.org/10.1016/j.ijrmms.2006.07.014
https://doi.org/10.1080/17499518.2022.2132263
https://doi.org/10.1007/s10346-019-01154-2
https://doi.org/10.1016/j.compgeo.2015.06.017
https://doi.org/10.1016/j.compgeo.2012.05.010


B. Dwinagara et al. (2024). Mining of Mineral Deposits, 18(4), 26-33 

 

33 

slope reliability. Reliability Engineering & System Safety, 140, 99-106. 

https://doi.org/10.1016/j.ress.2015.03.034 
[14] Efron, B. (1992). Bootstrap methods: Another look at the jackknife. 

Breakthroughs in Statistics: Methodology and Distribution, 569-593. 

https://doi.org/10.1007/978-1-4612-4380-9_41 
[15] Zhou, Y., Jing, M., Pang, R., Xu, B., & Yao, H. (2022, September). A 

novel method for the dynamic reliability analysis of slopes considering 

dependent random parameters via the direct probability integral method. 
Structures, 43, 1732-1749. https://doi.org/10.1016/j.istruc.2022.07.074 

[16] Xu, Z.X., & Zhou, X.P. (2018). Three-dimensional reliability analysis 
of seismic slopes using the copula-based sampling method. Engineering 

Geology, 242, 81-91. https://doi.org/10.1016/j.enggeo.2018.05.020 

[17] Das, I., Kumar, G., Stein, A., Bagchi, A., & Dadhwal, V.K. (2011). 
Stochastic landslide vulnerability modeling in space and time in a part 

of the northern Himalayas, India. Environmental Monitoring and As-

sessment, 178, 25-37. https://doi.org/10.1007/s10661-010-1668-0 
[18] Napoli, M.L., Barbero, M., Ravera, E., & Scavia, C. (2018). A stochas-

tic approach to slope stability analysis in bimrocks. International Jour-

nal of Rock Mechanics and Mining Sciences, 101, 41-49. 

https://doi.org/10.1016/j.ijrmms.2017.11.009 

[19] Ahooyi, T.M., Arbogast, J.E., & Soroush, M. (2015). An efficient 

copula-based method of identifying regression models of non-
monotonic relationships in processing plants. Chemical Engineering 

Science, 136, 106-114. https://doi.org/10.1016/j.ces.2015.03.044 

[20] Manconi, A., & Giordan, D. (2016). Landslide failure forecast in near-
real-time. Geomatics, Natural Hazards and Risk, 7(2), 639-648. 

https://doi.org/10.1080/19475705.2014.942388 

[21] Li, H., Xu, Q., He, Y., & Deng, J. (2018). Prediction of landslide displace-
ment with an ensemble-based extreme learning machine and copula models. 

Landslides, 15, 2047-2059. https://doi.org/10.1007/s10346-018-1020-2 

[22] Yang, L., Frees, E. W., & Zhang, Z. (2020). Nonparametric estima-
tion of copula regression models with discrete outcomes. Journal of 

the American Statistical Association, 115(530), 707-720. 

https://doi.org/10.1080/01621459.2018.1546586 
[23] Al-Harthy, M., Begg, S., & Bratvold, R.B. (2007). Copulas: A new 

technique to model dependence in petroleum decision making. Journal 

of Petroleum Science and Engineering, 57(1-2), 195-208. 

https://doi.org/10.1016/j.petrol.2005.10.015 

[24] Singh, J., Ardian, A., & Kumral, M. (2021). Gold-copper mining 

investment evaluation through multivariate copula-innovated simula-
tions. Mining, Metallurgy & Exploration, 38(3), 1421-1433. 

https://doi.org/10.1007/s42461-021-00424-9 

[25] Poole, M.A., & O’Farrell, P.N. (1971). The assumptions of the linear 

regression model. Transactions of the Institute of British Geographers, 
145-158. https://doi.org/10.2307/621706 

[26] Zhou, Q.M., Song, P.X.K., & Thompson, M.E. (2015). Profiling 

heteroscedasticity in linear regression models. Canadian Journal of 
Statistics, 43(3), 358-377. https://doi.org/10.1002/cjs.11252 

[27] Tracy, K., Waititu, H., & Sewe, S. (2022). A Copula-based approach 

for modelling the dependence between inflation and exchange rate in 
Kenya. Asian Journal of Probability and Statistics, 18(4), 59-84. 

https://doi.org/10.9734/ajpas/2022/v18i430457 
[28] Embrechts, P., Lindskog, F., & McNeil, A. (2001). Modelling depend-

ence with copulas, rapport technique. Zurich, Switzerland: Swiss Fed-

eral Institutes of Technology. 
[29] Nelsen, R.B. (2006). An introduction to copulas. New York, United 

States: Springer, 269 p. 

[30] Genest, C., & Favre, A. C. (2007). Everything you always wanted to 
know about copula modeling but were afraid to ask. Journal of Hydro-

logic Engineering, 12(4), 347-368. https://doi.org/10.1061/(ASCE)1084-

0699(2007)12:4(347) 

[31] Clemen, R.T., & Reilly, T. (1999). Correlations and copulas for deci-

sion and risk analysis. Management Science, 45(2), 208-224. 

https://doi.org/10.1287/mnsc.45.2.208 
[32] Frees, E.W., & Valdez, E.A. (1998). Understanding relationships using 

copulas. North American Actuarial Journal, 2(1), 1-25. 

https://doi.org/10.1080/10920277.1998.10595667 
[33] Vose, D. (2008). Risk analysis: A quantitative guide. West Sussex, 

United Kingdom: John Wiley & Sons, 752 p. 

[34] Ardian, A. (2021). Investigation into correlations, dependencies, and 
interactions between uncertain variables in risk analysis of mining pro-

jects. Montreal, Canada: McGill University, 178 p. 

[35] Mari, D.D., & Kotz, S. (2001). Correlation and dependence. London, United 
Kingdom: Imperial College Press, 236 p. https://doi.org/10.1142/p226 

[36] Ardian, A., & Kumral, M. (2021). Enhancing mine risk assessment 

through more accurate reproduction of correlations and interactions be-
tween uncertain variables. Mineral Economics, 34, 411-425. 

https://doi.org/10.1007/s13563-020-00238-z 

[37] Akaike, H. (1974). A new look at the statistical model identification. 

IEEE Transactions on Automatic Control, 19(6), 716-723. 

https://doi.org/10.1109/TAC.1974.1100705 

[38] Torikian, H., & Kumral, M. (2014). Analyzing reproduction of 
correlations in Monte Carlo simulations: Application to mine project 

valuation. Georisk: Assessment and Management of Risk for Engi-

neered Systems and Geohazards, 8(4), 235-249. 
https://doi.org/10.1080/17499518.2014.966116  

Удосконалення моделі прогнозування руйнування схилу шляхом 

застосування копули Архімеда для моделювання похибки 

Б. Двінагара, В. Вергіагара, О.Ф. Угурлу, С. Саптоно, Р. Салсабіла, А. Ардіан 

Мета. Удосконалення моделі прогнозування руйнування схилів при видобутку корисних копалин відкритим способом шляхом 

застосування копули Архімеда для моделювання членів похибки, що є важливим для запобігання витратним інцидентам і перервам 

у гірничому виробництві. 

Методика. Для підвищення точності існуючої лінійної регресійної моделі було проаналізовано чітку структуру членів похибки. 
Для вирішення цієї проблеми використані копула-моделі, оскільки вони ефективно відображають складні закономірності залежнос-

тей між випадковими величинами, забезпечуючи надійний метод включення аналізу членів похибки в модель. 

Результати. Запропонований новий підхід показав надійну методологію прогнозування руйнування схилів більш точно, ніж іс-

нуюча проста лінійна регресійна модель. Отримано лінійну регресійну модель згідно з масивом даних про руйнування схилів, яка 

має вигляд y = 50475.270 – 1.123 x. Змодельовано члена похибки за допомогою оберненої копули Гумбеля-Хоугаарда (GH-RR) з 

параметром θ = 1.12. Встановлено, що прогноз був зроблений із запізненням на 86.4 секунди, порівняно з 277.284 секунд при 

використанні існуючого традиційного підходу (тобто лінійної регресії без моделювання членів похибки на основі копули). Визна-

чено, що копульні моделі забезпечують точніший підхід, дозволяючи враховувати складні взаємозалежності у структурі помилки, 

а, ймовірнісна основа пропонованого підходу робить його більш реалістичним. 

Наукова новизна. Розроблений новий науковий підхід, в якому акцентується увага на аналізі та включенні члена похибки в 

модель, що часто не береться до уваги в методі простої лінійної регресії, і, зазвичай, використовується. 

Практична значимість. Впровадження моделі з використанням членів похибки на основі копули може значно підвищити точ-

ність прогнозування обвалів на схилах, тим самим запобігаючи витратним інцидентам і забезпечуючи безперебійне виробництво в 

гірничодобувних проєктах. 

Ключові слова: обвал схилу, зворотна швидкість, копула, моделювання із використанням похибки, лінійна регресія 
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