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Abstract 

Purpose. To improve the measurement and information base of ultrasonic measurements rock characteristics to assess their 

mineralogical varieties. It is proposed to use a combination of measurement results of the acoustic quality factor of the test sample 

in relation to longitudinal and transverse ultrasonic waves, as well as the characteristic coefficient based on the dispersion and the 

average amplitude value of the received signal, for fuzzy identification of mineralogical and technological varieties of iron ore. 

Methods. As elastic waves propagate through the rock mass, they undergo attenuation due to absorption and dissipation of 

ultrasonic signal energy. The degree of attenuation, as well as the wave propagation velocity, is dependent on the physical-

mechanical and chemical-mineralogical properties of the medium through which they travel. In this paper, we analyze a rock 

characterized by a complex structure comprising ore inclusions and surrounding matrix, each of which differs in its physical-

mechanical and chemical-mineralogical properties. In particular, in iron ore samples, the distribution of mineral grains and 

aggregates exhibits significant heterogeneity in terms of both amount and size. 

Findings. An iterative method of fuzzy identification of mineralogical-technological iron ore varieties, based on the analy-

sis of their properties in vector space of features, allows, by minimizing the sums of weighted distances between the analyzed 

and reference values of ultrasonic measurement results, to attribute them with a certain degree of belonging to the main techno-

logical types of ores mined at the deposit, and define them as magnetite quartzite with a confidence probability of 0.93. 

Originality. As an information base for identification of mineralogical iron ore varieties, the results of measuring the  

velocity and attenuation of longitudinal and transverse ultrasonic waves of appropriate frequency are used, on the basis of 

which the acoustic quality factor of the rock sample is calculated, as well as the characteristic parameter S, which is determined 

by the dispersion and average values of the received ultrasonic signal intensity, which has traveled a certain distance in the 

studied environment. 

Practical implications. The results of tests and practical approbation of the method for identifying mineralogical iron ore 

varieties based on the data of ultrasonic well logging testify to its high efficiency, which allows recommending the developed 

scientific-technical solutions for wide industrial application at mining enterprises. 
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1. Introduction 

Ultrasonic technology has found wide application in the 

mining industry at all stages of mining and processing of 

minerals [1], [2]. There are two main applications of ultra-

sonic waves in the mining industry: one is to assess the me-

chanical properties and condition of the rock mass [3], [4], 

and the other – to determine its geological and mineralogical 

structure [5], [6]. Ultrasonic measurements and technological 

ultrasound are also widely used in the practice of ore benefi-

ciation and preparation for metallurgical processing [7]. 

Mineral identification is an important part of geological 

exploration and evaluation of mineral deposits [8], [9]. Non-

destructive measurements of ultrasonic wave propagation 

parameters make it quite easy to obtain indirect data for 

classifying mineralogical rock mass analysis, which favora-

bly distinguishes them from classical methods that are ex-

pensive and time-consuming. However, the results of the 

analysis and the quality of the estimates obtained are directly 

dependent on the data set used and their ability to fully char-

acterize the features of the samples under study. To solve the 

above problems, research is being carried out using various 

measurement technologies and intelligent algorithms for 

identifying mineral varieties of rocks [9]-[12]. In order to 

increase the number of determined minerals and the accuracy 

of their identification, artificial neural networks are used in a 

number of works [13]-[15]. 

Ultrasonic measurements of rock characteristics can be 

effectively used both in laboratory conditions in relation to 
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their samples and directly in the rock mass using acoustic 

well logging methods. 

The results of experimental studies of the relationship be-

tween ultimate strength and acoustic quality factor on rock 

samples are described in [15]. Two methods for determining 

the tensile strength by direct and interpolation methods are 

compared. The advantage of the acoustic quality factor com-

pared to elastic wave velocity measurement results in as-

sessing the disturbance and residual strength of rocks is 

shown. The resulting dependences can be used to assess the 

residual strength and service life of the structural elements of 

mining systems - pillars and roofs of underground workings. 

The nature of the change in the amplitude peak, ultraso-

nic wave velocity, as well as the frequency dependence of 

the probing pulse travel time for different structures of rock 

samples was studied in [16]. This study was carried out on 

blocks of artificially prepared rock samples filled with gyp-

sum mortar, with the introduction of artificial joints at differ-

ent angles. The dependence of the ultrasonic wave velocity 

change on the structure and presence of damage in the test 

sample has been determined. 

Logging is an effective method for determining geophy-

sical rock properties based on the results of magnetometric, 

nuclear, acoustic, electrical and other measurements [17]. In 

the last decade, new logging technologies for exploration and 

mining of deposits have been developed, such as image ana-

lysis and nuclear magnetic resonance. 

Acoustic technology is widely used to measure the elastic 

properties of rocks surrounding a drilled well. An additional 

advantage of the technology is the ability to quantify elastic 

properties with minimal penetration effects. The research [18] 

highlights the main aspects of acoustic logging modeling that 

should be considered to obtain reliable and accurate results. 

It is noted that mathematical methods of finite elements al-

low solving complex problems in accordance with the speci-

fics of each problem. The used and similar methods of ma-

thematical modeling of technological processes in mining 

provide a reliable and flexible unified environment for sol-

ving multiphysical problems. 

Acoustic logging data is the basis for creating initial geo-

logical models and their subsequent use [19]. However, the 

quality of the information obtained directly depends on the 

state of the wellbore. And before creating the initial wave 

impedance model, it is necessary to make a correction for the 

environment [20]. Acoustic environment correction makes it 

possible to take into account the impact of wellbore collapse, 

interpret missing and anomalous sections of the acoustic 

curve, eliminate unreasonable spikes, dips, etc. 

The full elastic wave parameters are usually stored in 

memory for subsequent analysis and assessment in stationary 

conditions, but the measurement results of the probe pulse 

passage time can be transmitted directly during drilling for 

real-time use. This information is useful for the assessment 

of lithology, porosity, pore pressure and drill bit position 

correlation with seismic maps [21], [22]. Rapid assessment 

of the mechanical rock properties is also useful for determining 

wellbore stability during drilling. Acoustic logging during 

and after drilling allows monitoring changes in the state of 

the rock during the period of open hole operation. This can 

form an early warning of possible deterioration in rock integ-

rity, ultimately leading to wellbore stability problems. 

For effective mineralogical analysis, it is fundamentally 

important to choose the information about wave propagation 

characteristics that are used for this purpose. Studies [23], 

[24] have found that unlike the elastic wave propagation 

velocity, the physical dispersion of which is practically ab-

sent in most rocks, the attenuation coefficient is determined 

by the elastic oscillation frequency. In the wide frequency 

range – from 1 Hz to 10 MHz, the attenuation coefficient of 

elastic waves in different rocks varies from 1·10-8 to 2·102 m-1. 

The attenuation decrement over the same frequency range 

varies from 1·10-2 to 1.0 on average. It is claimed that the 

attenuation decrement in each type of igneous and sedimentary 

rock is not frequency dependent. The influence of intergrain 

boundaries on the attenuation coefficient is manifested by the 

fact that the attenuation coefficient in a single crystal is at least 

an order of magnitude lower than in a rock consisting of a 

given mineral. At the same time, the finer the rock grains, the 

stronger the scattering factor is. Rock studies show that the 

attenuation coefficient of elastic waves decreases with increas-

ing pressure. This is due to the strengthening of bonds between 

minerals. The grain size in the rock (d) determines the cutoff 

frequency at which a quadratic scattering law is observed. In 

granite (d = 2.5 mm), the limit frequency according to experi-

mental data is 2 MHz; in gabbro-diabase (d = 1 mm) – 6 MHz; 

in sandstone (d = 1.2 mm) – 3.5 MHz [23], [24]. 

Thus, the dependence of ultrasonic wave propagation pa-

rameters on the studied medium characteristics is widely used in 

practice. However, given the complex structure and variety of 

physical-mechanical and chemical-mineralogical properties of 

ore formations, the solution to the problem of mineralogical 

analysis of ore deposits should be sought in the direction of 

using new informative parameters, methods for analyzing the 

information obtained and improving measurement technologies. 

2. Methods 

Consider a rock, the characteristics of which are defined as 

a structure consisting of ore inclusions and associated rocks 

that differ in their physical-mechanical and chemical-

mineralogical properties. In the iron ore varieties, grains and 

mineral aggregates that form them are distributed unevenly 

both in quantity and size. Table 1 shows the mineral composi-

tion characteristics, as well as the size of individual elements 

and aggregates in the layers of hornfelses and jaspilites of the 

Skelevatsky magnetite deposit (“Pivdennyi GZK” Mining 

and Processing Plant, Kryvyi Rih, Ukraine). Figure 1 shows 

the structural peculiarities of the main iron-bearing mine-

rals [25]. A variety of sizes and shapes of sections of indi-

vidual elements and aggregates of iron-bearing minerals 

allow us to conclude that it is expedient to use these peculiar-

ities in their identification by acoustic logging methods. 

The theoretical basis of acoustic logging is mainly based 

on the Lame equation describing the elastic wave propaga-

tion in a continuum. In the frequency domain (e − iωt), for 

isotropic media it looks as follows: 

( ) ( ) 22 0u u u     − +   − = ,         (1) 

where: 

u – the displacement vector; 

λ = K − 2/3 μ and μ – the Lamé parameters (μ – the shear 

modulus); 

K – volumetric module. 
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Table 1. Mineral composition characteristics, as well as the size of individual elements and aggregates in the layers of hornfelses and 

jaspilites of the Skelevatsky magnetite deposit 

Hornfels and 

Jaspilites 
Layer types 

Magnetite Hematite Quartz 

Size, mm 
Content, % 

Size, mm 
Content, % 

Grain 

size, mm 
Content, % 

grain unit grain unit 

Magnetite 

Ore 0.15 0.35 90.5 – – – 0.04 8.5 

Mixed 0.11 0.18 37.5 – – – 0.04 59.5 

Nonmetallic 0.06 0.00 3.0 – – – 0.07 95.0 

Chlorite-carbonate-

magnetite 

Ore 0.18 0.45 85.0 – – – 0.05 8.0 

Mixed 0.12 0.20 22.0 – – – 0.06 53.5 

Nonmetallic 0.05 – 2.5 – – – 0.075 73.0 

Hematite-magnetite 

Ore 0.15 0.60 87.0 0.06 0.10 7.5 0.03 5.5 

Mixed 0.12 0.33 38.0 0.03 0.05 6.0 0.05 55.6 

Nonmetallic 0.08 0.10 1.8 0.01 – 5.0 0.06 92.0 

Magnetite-

cummingtonite-

chlorite-siderite 

Ore 0.15 0.20 76.0 – – – 0.08 4.0 

Mixed 0.07 0.12 10.7 – – – 0.06 49.6 

Nonmetallic 0.04 – 5.0 – – – 0.10 52.0 

 

 

Figure 1. Structural peculiarities of iron-containing minerals:  

(a) lancetonide hematite; (b) martite with relics of mag-

netite; (c) euhedral-grained magnetite segregations in 

the hornfels; (d) the relationship of hematite (white) and 

magnetite (gray) 

 

The solution of this equation in a homogeneous medium 

is the sum of two elastic waves: longitudinal compression 

(potential) and transverse (shear) waves [26]. 

When ultrasonic waves propagate in the rock, they are ab-

sorbed and scattered by ore (mineral) inclusions (formations) – 

individual elements and aggregates. The parameters of these 

processes are characterized by their effective extinction (atten-

uation) cross sections p, absorption c and scattering s. Un-

der effective extinction cross section p, the area of the section 

perpendicular to the direction of ultrasonic wave incidence, for 

which the incoming sound energy is equal to the sum of the 

energies absorbed and scattered by ore formations, is meant. In 

this case, the linear absorption ∑c (λ) and scattering ∑s (λ) 

coefficients can be determined by Formulas (2): 

( ) ( )c cn   = , ( ) ( )s sn   = ,         (2) 

where: 

n – the concentration of inclusions (the number of inclu-

sions per unit volume V); 

c (λ) and s (λ) – the total cross sections of absorption 

and scattering of ultrasonic waves on the ore formation. 

The total absorption and scattering cross sections depend 

not only on the wavelength of ultrasonic vibrations, but also 

on the sizes of inclusions r. The linear absorption and scatter-

ing coefficients should be understood as the values determin-

ing the average energy fraction absorbed and scattered by the 

medium per unit path length per unit time. 

Denote the ultrasonic signal intensity when it passes 

through a fixed distance Z in the rock: 

( )
1

1
exp

k

i
i

I r Z
V

 
=

 
= −  

 
,            (3) 

where: 

 (ri) – the extinction cross-section of particles of ore 

formations with a size of ri. 

The dispersion of this value is determined by the Expression: 

2 2D M  = −   ,              (4) 

where: 

( )
2

2

0k

М M F k
k






=

 
=  

 
 

.            (5) 

Here M  means the mathematical expectation of a ran-

dom variable  ; M
k

 
 
 

 is conditional mathematical expec-

tation for a fixed number of ore inclusions k, and the symbol 

< > is an averaging of fluctuations in their size and number. 

According to the methodology given in the works [27], 

[28], the average value of the signal passing through the 

controlled rock volume V is determined by the Expression: 

( )
( )

1

exp 1
r Z

VI nV e F r dr



 −

  
   = − −  

    

,        (6) 

where: 

F (r) – the size distribution function of mineral inclusions. 

Then Expression (5) can be written in the following  

form: 

( )
( )

( )
2

2 2 exp 1
r Z

VM I nV e F r dr



 −

  
  = − −  

    

.       (7) 

Substitute the found values into Expression (4) and  

obtain: 
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( )
( )

( )
( )

2

2

1

2

exp 1

exp 2 1 .

r Z
V

r Z
V

D I nV e F r dr

I nV e F r dr






 −

 −

  
  = − − − 

    

  
  − −  

    

       (8) 

Denote: 

( ) ( )
2

2exp
nZ

r F r dr
V

 
  

=  
  

.           (9) 

Then: 

( ) ( )2 2exp 2D I nZ r F r dr   
   = −    

.      (10) 

Define the relative value: 

( ) ( )

( ) ( )

2
0

0

0
0

exp

1

exp

I nZ r F r dr
D

I nZ r F r dr

  





 





  
− − 
  

= = −
    

−  
  

.  (11) 

Taking into account (9) and (11), define the characteristic 
function S [28]: 

( ) ( )

( ) ( )

2

0

ln

ln

r F r dr
Z

S
I V

r F r dr













= =
 



.       (12) 

From this it follows that the value S is a function of the 
size of mineral inclusions in a controlled rock mass volume 
and thus characterizes its structural and textural features. 

3. Results and discussion 

The measurement results of the characteristics of 5 types of 
ores mined and supplied for processing from one of the depo-
sits of the Kryvyi Rih iron-ore basin are given in Table 2. At 
the same time, the following designations of ore types  
are adopted [5]: 1 – magnetite corneas; 2 – silicate-carbonate-
magnetite hornblende; 3 – red banded magnetite and hematite-
magnetite hornblende; 4 – semi-oxidized and oxidized cor-
neas; 5 – silicate slates, ore-free hornblende and quartz. 

 
Table 2. Results of the analysis of different varieties of ores 

Ore 
variety 

Content in % Density, 
kg/m3 Quartz Magnetite Hematite Siderite 

1 63.7 30.9 1.4 3.8 3431 

2 68.4 21.7 0.4 9.1 3248 

3 64.5 30.2 1.5 3.8 3414 

4 74.6 4.5 0.7 20.2 2989 

5 60.8 31.4 5.4 2.5 3530 

 
Distribution of mineral components in the specified ore vari-

eties is presented in Figure 2. The speed of longitudinal ultra-
sonic wave propagation in these samples is 4100-5800 m/s, 
transverse – 2300-2900 m/s, and the attenuation is 23-44 dB/m. 
These dependences are an assessment of the physical-mecha-
nical rock mass characteristics. The dependence of the speed of 
longitudinal CL ultra-sonic waves on density ρ and elastic cha-
racteristics of the studied rock (E – Young’s modulus, μ – Pois-
son’s ratio, σ – shear modulus) is exemplified in Figure 3. 

 

Figure 2. Mineral composition of the studied ore varieties 

 

For further analysis of the studied rock based on the ob-

tained measurement results, it is convenient to use its acous-

tic quality factor Q according to longitudinal and transverse 

waves, since it is determined simultaneously with attenuation 

coefficients and propagation velocity of ultrasonic signals of 

a certain frequency [29]. 

The acoustic quality factor of a rock sample is deter-

mined as follows: 

0fQ
C



 
= = ,             (13) 

where: 

θ – the attenuation decrement; 

f0 – is the ultrasonic oscillation frequency; 

C – the elastic wave propagation velocity. 

At the same time, the spatial attenuation coefficient of 

elastic waves is determined by the Formula (14): 

( )

( )
1

2 1 2

1
ln

A l

l l A l


 
=  

−   

,           (14) 

where: 

l1, l2, A (l1), A (l2) – the measurement bases and the corre-

sponding signal amplitudes. 

However, it should be noted that for the successful identi-

fication of at least the main mineralogical-technological 

types of ore of the studied deposit, the specified parameters 

and their interrelationships are not sufficient.  

Thus, according to the results obtained for the studied 

deposit, the correlation coefficient between the longitudinal 

CL and transverse CT wave velocities and density ρ of rocks 

is 0.53-0.72, between CL, CT and elastic characteristics 

(Young’s modulus, Poisson’s ratio, shear modulus) –  

0.55-0.94, and the correlation coefficient between  

the attenuation coefficient and the same characteristics does 

not exceed 0.71. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3. Dependence of the velocity of longitudinal ultrasonic 

waves, CL, on rock characteristics (the shaded bands 

are the Working-Hotelling uncertainty intervals of the 

regression lines at the 95% confidence level): 

(a) density; (b) Young’s modulus; (c) Poisson’s ratio; 

(d) shear modulus 

 

Since the rock is a complex conglomerate consisting of 

crystalline and amorphous mineral formations with different 

strength properties, structural texture and particle size distribu-

tion, which are of a stochastic nature, the characteristics of a 

particular medium under study, by definition cannot be unam-

biguous (which is confirmed for the same samples from diffe-

rent deposits). To improve the adequacy of mineralogical analy-

sis of ore, it is advisable to consider its physical-mechanical 

characteristics and the results of their indirect estimates in the 

form of fuzzy sets, and to classify them in the vector space of 

features, use the appropriate mathematical apparatus [30]. 

To implement this approach, the Fuzzy C-means (FCM) 

fuzzy clustering method was chosen [31], [32]. In this case, 

the set of informative attributes X is divided into c fuzzy 

subsets, and the structure of the fuzzy distribution matrix 

 ikU =  has the following form: 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

c

c

N N N c

U

  

  

  

 
 
 =
 
 
  

.         (15) 

Clustering algorithm FCM is based on the minimization 

of the objective function: 

( ) ( )
2

1 1

; ,
c N m

ik k i A
i k

J X U V x v
= =

= −  ,       (16) 

where: 

1 2, , , , n
c iV v v v v R=    ,          (17) 

is a vector of cluster prototypes (centers) to be determined, and: 

( ) ( )
22 T

ikA k i k i k iA
D x v x v A x v= − = − − ,       (18) 

is the square of the scalar product of the distance norm. 

Minimization of the objective Function (16) is possible 

only if: 

( )
( )2 1

1

1
,1 ,1ik m

c
ikA jkAj

i c k N

D D


−

=

=    



,    (19) 

and 

1 1

, 1
N N

m m
i ik k ik

k k

v x i c 
= =

=    .         (20) 

Equation (20) gives vi as a weighted average of the data 

elements belonging to the cluster, where weights are the 

degree of membership. 

Figure 4 shows the stages in the execution of the FCM 

algorithm [33]. 

 

 

Figure 4. Stages of the FCM algorithm execution 

 

In accordance with the above, the results of measuring 

the velocity, as well as longitudinal and transverse ultrasonic 

wave attenuation with the corresponding frequency are used 

as an information base for the identification of mineralogical 
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varieties of iron ore. Based on these results, the acoustic 

quality factor of the rock sample is calculated, and the char-

acteristic parameter S, determined by the variance and ave-

rage values of the intensity of the received ultrasonic signal 

that has traveled a certain distance in the studied medium. 

It has been found that when identifying 5 mineralogical 

iron ore varieties, which is characteristic for the studied de-

posit, and, accordingly, dividing the obtained array of meas-

ured data into 5 clusters using the Fuzzy C-means algorithm, 

it is necessary to perform on the average 22 iterations. The 

change in the objective function during the operation of the 

algorithm is presented in Figure 5. 

 

 

Figure 5. Dependence of the objective function value on the num-

ber of clustering algorithm iterations 

 

The analysis of the scale diagrams for the membership 

functions of the points – the measurement results of iron ore 

characteristics for each cluster is shown in Figure 6. 

 

 

 

 

Figure 6. Diagrams of the membership function range values 

The following indicators are used to assess the quality of 

clustering [32]-[35]: Partition Coefficient (PC), Classifica-

tion Entropy (CE), Partition Index (SC), Separation Index 

(S), Xie and Beni's Index (XB), Dunn’s Index (DI), Alterna-

tive Dunn Index (DII). The values of these indicators based 

on the results of experimental studies are given in Table 3. 

 
Table 3. Assessments of clustering quality 

PC CE SC S XB DI ADI 

0.6965 0.7013 0.5410 0.0046 3.9887 0.2032 0.0003 

 

The value of the membership function of belonging to its 

cluster for each studied sample point significantly exceeds 

the value of the function of belonging to other clusters (num-

ber of parallel experiments in a series conducted under the 

same conditions k = 9, number of series n = 24). The experi-

mental data processing results for each of the three informa-

tive data features are shown in Table 4. 

 
Table 4. Experimental data processing results 

Sign 
Cochrane criterion 

G calculated G tabular 

C1 0.4417 0.4748 

C2 0.4326 0.4748 

C3 0.4225 0.4748 

 

For all experimental data obtained, the estimated value of 

the Cochran criterion is less than the tabulated values. There-

fore, the analysis performed confirms the reproducibility of 

the results obtained. The results of tests and practical appro-

bation of the method for identifying mineralogical iron ore 

varieties based on the ultrasonic well logging data testify to 

its high efficiency, which allows recommending the devel-

oped scientific-technical solutions for wide industrial appli-

cation at mining enterprises. 

4. Conclusions 

As an information base for identification of mineralogical 

iron ore varieties, the results of measuring the velocity and 

attenuation of longitudinal and transverse ultrasonic waves of 

appropriate frequency are used, on the basis of which the 

acoustic quality factor of the rock sample is calculated, as 

well as the characteristic parameter S, which is determined 

by the dispersion and average values of the received ultra-

sonic signal intensity, which has traveled a certain distance in 

the studied environment. 

An iterative method of fuzzy identification of mineralogi-

cal-technological iron ore varieties, based on the analysis of 

their properties in vector space of features, allows, by minimi-

zing the sums of weighted distances between the analyzed and 

reference values of ultrasonic measurement results, to attribute 

them with a certain degree of belonging to the main technolo-

gical types of ores mined at the deposit, and define them as 

magnetite quartzite with a confidence probability of 0.93. 
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Методика. Під час проникнення еластичних хвиль крізь масив породи вони піддаються затуханню через поглинання та розсію-

вання енергії ультразвукового сигналу. Ступінь затухання, а також швидкість поширення хвиль, залежить від фізико-механічних та 

хіміко-мінералогічних властивостей середовища, через яке вони проходять. У роботі аналізується порода, що характеризується 

складною структурою, яка складається з включень руди та оточуючої речовини, з відмінними фізико-механічними та хіміко-

мінералогічними властивостями. 

Результати. Ітеративний метод нечіткої ідентифікації мінералогічних і технологічних різновидів залізної руди, заснований на 

аналізі їхніх властивостей у векторному просторі ознак, дозволяє, мінімізуючи суми зважених відстаней між аналізованими та 

довідковими значеннями результатів ультразвукових вимірювань, присвоїти їм певний ступінь належності до основних технологі-

чних різновидів руди, що видобуваються на родовищі, та визначити їх як магнетитові кварцити з вірогідністю 0.93. 

Наукова новизна. Як інформаційна база для ідентифікації мінералогічних різновидів залізної руди використовуються резуль-

тати вимірювання швидкості та затухання подовжніх і поперечних ультразвукових хвиль відповідної частоти, на основі яких роз-

раховується акустичний якісний показник породи та характерний параметр, що визначається дисперсією і середніми значеннями 

інтенсивності отриманого ультразвукового сигналу, який пройшов певну відстань у вивченому середовищі. 

Практична значимість. Результати тестувань та практичної апробації методу ідентифікації мінералогічних різновидів залізної 

руди на основі даних ультразвукового каротажу свердловин свідчать про його високу ефективність, що дозволяє рекомендувати 

розроблені науково-технічні рішення для широкого промислового застосування на гірничодобувних підприємствах. 

Ключові слова: залізна руда, ідентифікація, ультразвук, нечітка кластеризація 
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