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Abstract

Purpose. To improve the measurement and information base of ultrasonic measurements rock characteristics to assess their
mineralogical varieties. It is proposed to use a combination of measurement results of the acoustic quality factor of the test sample
in relation to longitudinal and transverse ultrasonic waves, as well as the characteristic coefficient based on the dispersion and the
average amplitude value of the received signal, for fuzzy identification of mineralogical and technological varieties of iron ore.

Methods. As elastic waves propagate through the rock mass, they undergo attenuation due to absorption and dissipation of
ultrasonic signal energy. The degree of attenuation, as well as the wave propagation velocity, is dependent on the physical-
mechanical and chemical-mineralogical properties of the medium through which they travel. In this paper, we analyze a rock
characterized by a complex structure comprising ore inclusions and surrounding matrix, each of which differs in its physical-
mechanical and chemical-mineralogical properties. In particular, in iron ore samples, the distribution of mineral grains and
aggregates exhibits significant heterogeneity in terms of both amount and size.

Findings. An iterative method of fuzzy identification of mineralogical-technological iron ore varieties, based on the analy-
sis of their properties in vector space of features, allows, by minimizing the sums of weighted distances between the analyzed
and reference values of ultrasonic measurement results, to attribute them with a certain degree of belonging to the main techno-
logical types of ores mined at the deposit, and define them as magnetite quartzite with a confidence probability of 0.93.

Originality. As an information base for identification of mineralogical iron ore varieties, the results of measuring the
velocity and attenuation of longitudinal and transverse ultrasonic waves of appropriate frequency are used, on the basis of
which the acoustic quality factor of the rock sample is calculated, as well as the characteristic parameter S, which is determined
by the dispersion and average values of the received ultrasonic signal intensity, which has traveled a certain distance in the
studied environment.

Practical implications. The results of tests and practical approbation of the method for identifying mineralogical iron ore
varieties based on the data of ultrasonic well logging testify to its high efficiency, which allows recommending the developed
scientific-technical solutions for wide industrial application at mining enterprises.
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1. Introduction classifying mineralogical rock mass analysis, which favora-

Ultrasonic technology has found wide application in the ~ Ply distinguishes them from classical methods that are ex-
mining industry at all stages of mining and processing of ~ Pensive and time-consuming. However, the results of the
minerals [1], [2]. There are two main applications of ultra- analysis and the quality of the estimates obt_a_lned are directly
sonic waves in the mining industry: one is to assess the me- depepdent on the data set used and their ability to fully char-
chanical properties and condition of the rock mass [3], [4],  acterize the features of the _samples und<_er study. To solve_ the
and the other — to determine its geological and mineralogical ~ aPove problems, research is being carried out using various
structure [5], [6]. Ultrasonic measurements and technological ~ Measurement technologies and intelligent algorithms for

ultrasound are also widely used in the practice of ore benefi-  identifying mineral varieties of rocks [9]-[12]. In order to
ciation and preparation for metallurgical processing [7]. increase the number of determined minerals and the accuracy

Mineral identification is an important part of geological of their identification, artificial neural networks are used in a
exploration and evaluation of mineral deposits [8], [9]. Non-  number of works [13]-[15].

destructive measurements of ultrasonic wave propagation Ultrasonic measurements of rock characteristics can be
parameters make it quite easy to obtain indirect data for ~ effectively used both in laboratory conditions in relation to
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their samples and directly in the rock mass using acoustic
well logging methods.

The results of experimental studies of the relationship be-
tween ultimate strength and acoustic quality factor on rock
samples are described in [15]. Two methods for determining
the tensile strength by direct and interpolation methods are
compared. The advantage of the acoustic quality factor com-
pared to elastic wave velocity measurement results in as-
sessing the disturbance and residual strength of rocks is
shown. The resulting dependences can be used to assess the
residual strength and service life of the structural elements of
mining systems - pillars and roofs of underground workings.

The nature of the change in the amplitude peak, ultraso-
nic wave velocity, as well as the frequency dependence of
the probing pulse travel time for different structures of rock
samples was studied in [16]. This study was carried out on
blocks of artificially prepared rock samples filled with gyp-
sum mortar, with the introduction of artificial joints at differ-
ent angles. The dependence of the ultrasonic wave velocity
change on the structure and presence of damage in the test
sample has been determined.

Logging is an effective method for determining geophy-
sical rock properties based on the results of magnetometric,
nuclear, acoustic, electrical and other measurements [17]. In
the last decade, new logging technologies for exploration and
mining of deposits have been developed, such as image ana-
lysis and nuclear magnetic resonance.

Acoustic technology is widely used to measure the elastic
properties of rocks surrounding a drilled well. An additional
advantage of the technology is the ability to quantify elastic
properties with minimal penetration effects. The research [18]
highlights the main aspects of acoustic logging modeling that
should be considered to obtain reliable and accurate results.
It is noted that mathematical methods of finite elements al-
low solving complex problems in accordance with the speci-
fics of each problem. The used and similar methods of ma-
thematical modeling of technological processes in mining
provide a reliable and flexible unified environment for sol-
ving multiphysical problems.

Acoustic logging data is the basis for creating initial geo-
logical models and their subsequent use [19]. However, the
quality of the information obtained directly depends on the
state of the wellbore. And before creating the initial wave
impedance model, it is necessary to make a correction for the
environment [20]. Acoustic environment correction makes it
possible to take into account the impact of wellbore collapse,
interpret missing and anomalous sections of the acoustic
curve, eliminate unreasonable spikes, dips, etc.

The full elastic wave parameters are usually stored in
memory for subsequent analysis and assessment in stationary
conditions, but the measurement results of the probe pulse
passage time can be transmitted directly during drilling for
real-time use. This information is useful for the assessment
of lithology, porosity, pore pressure and drill bit position
correlation with seismic maps [21], [22]. Rapid assessment
of the mechanical rock properties is also useful for determining
wellbore stability during drilling. Acoustic logging during
and after drilling allows monitoring changes in the state of
the rock during the period of open hole operation. This can
form an early warning of possible deterioration in rock integ-
rity, ultimately leading to wellbore stability problems.

For effective mineralogical analysis, it is fundamentally
important to choose the information about wave propagation
characteristics that are used for this purpose. Studies [23],
[24] have found that unlike the elastic wave propagation
velocity, the physical dispersion of which is practically ab-
sent in most rocks, the attenuation coefficient is determined
by the elastic oscillation frequency. In the wide frequency
range — from 1 Hz to 10 MHz, the attenuation coefficient of
elastic waves in different rocks varies from 1:10® to 2-:10%> m™.
The attenuation decrement over the same frequency range
varies from 1-102 to 1.0 on average. It is claimed that the
attenuation decrement in each type of igneous and sedimentary
rock is not frequency dependent. The influence of intergrain
boundaries on the attenuation coefficient is manifested by the
fact that the attenuation coefficient in a single crystal is at least
an order of magnitude lower than in a rock consisting of a
given mineral. At the same time, the finer the rock grains, the
stronger the scattering factor is. Rock studies show that the
attenuation coefficient of elastic waves decreases with increas-
ing pressure. This is due to the strengthening of bonds between
minerals. The grain size in the rock (d) determines the cutoff
frequency at which a quadratic scattering law is observed. In
granite (d = 2.5 mm), the limit frequency according to experi-
mental data is 2 MHz; in gabbro-diabase (d = 1 mm) — 6 MHz;
in sandstone (d = 1.2 mm) — 3.5 MHz [23], [24].

Thus, the dependence of ultrasonic wave propagation pa-
rameters on the studied medium characteristics is widely used in
practice. However, given the complex structure and variety of
physical-mechanical and chemical-mineralogical properties of
ore formations, the solution to the problem of mineralogical
analysis of ore deposits should be sought in the direction of
using new informative parameters, methods for analyzing the
information obtained and improving measurement technologies.

2. Methods

Consider a rock, the characteristics of which are defined as
a structure consisting of ore inclusions and associated rocks
that differ in their physical-mechanical and chemical-
mineralogical properties. In the iron ore varieties, grains and
mineral aggregates that form them are distributed unevenly
both in quantity and size. Table 1 shows the mineral composi-
tion characteristics, as well as the size of individual elements
and aggregates in the layers of hornfelses and jaspilites of the
Skelevatsky magnetite deposit (“Pivdennyi GZK” Mining
and Processing Plant, Kryvyi Rih, Ukraine). Figure 1 shows
the structural peculiarities of the main iron-bearing mine-
rals [25]. A variety of sizes and shapes of sections of indi-
vidual elements and aggregates of iron-bearing minerals
allow us to conclude that it is expedient to use these peculiar-
ities in their identification by acoustic logging methods.

The theoretical basis of acoustic logging is mainly based
on the Lame equation describing the elastic wave propaga-
tion in a continuum. In the frequency domain (e ~*), for
isotropic media it looks as follows:

UV -V -u—(A+24)V(Vu)-a?u=0, @)

where:

u — the displacement vector;

A=K ~=2/3 uand y — the Lamé parameters (u — the shear
modulus);

K — volumetric module.
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Table 1. Mineral composition characteristics, as well as the size of individual elements and aggregates in the layers of hornfelses and

jaspilites of the Skelevatsky magnetite deposit

Magnetite Hematite Quartz
Hornfels and Layer types Size, mm Size, mm Grain
Jaspilites yertyp — - Content, % — —Content, % . a Content, %
grain unit grain unit size, mm

Ore 0.15 0.35 90.5 — — — 0.04 8.5
Magnetite Mixed 0.11 0.18 375 - — — 0.04 595
Nonmetallic 0.06 0.00 3.0 - - - 0.07 95.0
Chlorite-carbonate- Qre 0.18 0.45 85.0 — — — 0.05 8.0
magnetite Mixed _ 0.12 0.20 22.0 — — — 0.06 53.5
Nonmetallic 0.05 - 25 - - - 0.075 73.0
Ore 0.15 0.60 87.0 0.06 0.10 7.5 0.03 5.5
Hematite-magnetite Mixed 0.12 0.33 38.0 0.03  0.05 6.0 0.05 55.6
Nonmetallic 0.08 0.10 1.8 0.01 — 5.0 0.06 92.0
Magnetite- Ore 0.15 0.20 76.0 — — - 0.08 4.0
cummingtonite- Mixed 0.07 0.12 10.7 - - - 0.06 49.6
chlorite-siderite Nonmetallic 0.04 — 5.0 — — — 0.10 52.0

Figure 1. Structural peculiarities of iron-containing minerals:
(a) lancetonide hematite; (b) martite with relics of mag-
netite; (c) euhedral-grained magnetite segregations in
the hornfels; (d) the relationship of hematite (white) and
magnetite (gray)

The solution of this equation in a homogeneous medium
is the sum of two elastic waves: longitudinal compression
(potential) and transverse (shear) waves [26].

When ultrasonic waves propagate in the rock, they are ab-
sorbed and scattered by ore (mineral) inclusions (formations) —
individual elements and aggregates. The parameters of these
processes are characterized by their effective extinction (atten-
uation) cross sections op, absorption o and scattering os. Un-
der effective extinction cross section op, the area of the section
perpendicular to the direction of ultrasonic wave incidence, for
which the incoming sound energy is equal to the sum of the
energies absorbed and scattered by ore formations, is meant. In
this case, the linear absorption Y (1) and scattering Y (1)
coefficients can be determined by Formulas (2):

S(2)=nog(4), 5 (i)=nog(2),

where:

n — the concentration of inclusions (the number of inclu-
sions per unit volume V);

o: (1) and o3 (A) —the total cross sections of absorption
and scattering of ultrasonic waves on the ore formation.

)

The total absorption and scattering cross sections depend
not only on the wavelength of ultrasonic vibrations, but also
on the sizes of inclusions r. The linear absorption and scatter-
ing coefficients should be understood as the values determin-
ing the average energy fraction absorbed and scattered by the
medium per unit path length per unit time.

Denote the ultrasonic signal intensity when it passes
through a fixed distance Z in the rock:

1 k
E=1, exp{—vglo-(ri )Z} ,

where:

o(r) —the extinction cross-section of particles of ore
formations with a size of r;.

The dispersion of this value is determined by the Expression:

®)

De =M&P-<&>2, 4
where:
0 é‘:z
MEP =y M(—JF(I{). ©)
k=0 [ K

Here M & means the mathematical expectation of a ran-

g

dom variable &; M (E) is conditional mathematical expec-

tation for a fixed number of ore inclusions k, and the symbol
<> is an averaging of fluctuations in their size and number.
According to the methodology given in the works [27],
[28], the average value of the signal passing through the
controlled rock volume V is determined by the Expression:

» Lo(r)z
<&E>=l,expi-nV|1-Je V

F(r)dr ¢, (6)

where:
F (r) — the size distribution function of mineral inclusions.
Then Expression (5) can be written in the following
form:

2
M (52) —12exp]-nv|1- je_Va(r)z

o

F(r)dr @)

Substitute the found values into Expression (4) and
obtain:
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, © ~25(r)z

DE=12exp{-nV|1-[e V F(r)dr|;—

)]
© —ia(r)Z
~1Zexpi2nv|1-je V F(r)dr
Denote:
2 %

y/:exp{%jaz(r)F(r)dr}. 9)

Then:

DE =12 exp{ZnZTa(r)F(r)dr}[lyz —1//:| . (10)

Define the relative value:
Iy ex —nZOO r)F(r)dr 2_
5 " p{ fo(r)F(r) }w v
<> Ioexp{—nZTa(r)F(r)dr}\/;

=Jw-1. (11)

0

Taking into account (9) and (11), define the characteristic
function S [28]:

(12)

From this it follows that the value S is a function of the
size of mineral inclusions in a controlled rock mass volume
and thus characterizes its structural and textural features.

3. Results and discussion

The measurement results of the characteristics of 5 types of
ores mined and supplied for processing from one of the depo-
sits of the Kryvyi Rih iron-ore basin are given in Table 2. At
the same time, the following designations of ore types
are adopted [5]: 1 — magnetite corneas; 2 — silicate-carbonate-
magnetite hornblende; 3 — red banded magnetite and hematite-
magnetite hornblende; 4 —semi-oxidized and oxidized cor-
neas; 5 — silicate slates, ore-free hornblende and quartz.

Table 2. Results of the analysis of different varieties of ores

Ore Content in % Density,
variety Quartz  Magnetite  Hematite  Siderite kg/m?®
1 63.7 30.9 14 3.8 3431
2 68.4 21.7 0.4 9.1 3248
3 64.5 30.2 15 3.8 3414
4 74.6 4.5 0.7 20.2 2989
5 60.8 314 5.4 2.5 3530

Distribution of mineral components in the specified ore vari-
eties is presented in Figure 2. The speed of longitudinal ultra-
sonic wave propagation in these samples is 4100-5800 m/s,
transverse — 2300-2900 m/s, and the attenuation is 23-44 dB/m.
These dependences are an assessment of the physical-mecha-
nical rock mass characteristics. The dependence of the speed of
longitudinal CL ultra-sonic waves on density p and elastic cha-
racteristics of the studied rock (E — Young’s modulus, u — Pois-
son’s ratio, o — shear modulus) is exemplified in Figure 3.
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Figure 2. Mineral composition of the studied ore varieties

For further analysis of the studied rock based on the ob-
tained measurement results, it is convenient to use its acous-
tic quality factor Q according to longitudinal and transverse
waves, since it is determined simultaneously with attenuation
coefficients and propagation velocity of ultrasonic signals of
a certain frequency [29].

The acoustic quality factor of a rock sample is deter-
mined as follows:

r nfy

=== 13
Q R (13)
where:

0 — the attenuation decrement;

fo — is the ultrasonic oscillation frequency;

C — the elastic wave propagation velocity.

At the same time, the spatial attenuation coefficient of
elastic waves is determined by the Formula (14):

a:;ll |n{2((::))]

where:

I3, 1o, A (1), A (I2) — the measurement bases and the corre-
sponding signal amplitudes.

However, it should be noted that for the successful identi-
fication of at least the main mineralogical-technological
types of ore of the studied deposit, the specified parameters
and their interrelationships are not sufficient.

Thus, according to the results obtained for the studied
deposit, the correlation coefficient between the longitudinal
C. and transverse Cr wave velocities and density p of rocks
is 0.53-0.72, between C., Cr and elastic characteristics
(Young’s modulus, Poisson’s ratio, shear modulus) —
0.55-0.94, and the correlation coefficient between
the attenuation coefficient and the same characteristics does
not exceed 0.71.

(14)
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Figure 3. Dependence of the velocity of longitudinal ultrasonic
waves, Ci, on rock characteristics (the shaded bands
are the Working-Hotelling uncertainty intervals of the
regression lines at the 95% confidence level):
(a) density; (b) Young’s modulus; (c) Poisson’s ratio;
(d) shear modulus

Since the rock is a complex conglomerate consisting of
crystalline and amorphous mineral formations with different
strength properties, structural texture and particle size distribu-
tion, which are of a stochastic nature, the characteristics of a
particular medium under study, by definition cannot be unam-
biguous (which is confirmed for the same samples from diffe-
rent deposits). To improve the adequacy of mineralogical analy-
sis of ore, it is advisable to consider its physical-mechanical
characteristics and the results of their indirect estimates in the
form of fuzzy sets, and to classify them in the vector space of
features, use the appropriate mathematical apparatus [30].

To implement this approach, the Fuzzy C-means (FCM)
fuzzy clustering method was chosen [31], [32]. In this case,
the set of informative attributes X is divided into ¢ fuzzy

subsets, and the structure of the fuzzy distribution matrix
U =[x ] has the following form:

M1 t2 0 Higc
U= ﬂ?,l ﬂ2:,2 #2:,(: . (15)
HN1 HN,2 HN ¢

Clustering algorithm FCM is based on the minimization
of the objective function;

c N

J(X,U,V)Zz‘ikzl(lulk) ”Xk V'"A’ (16)
i=1k=

where:

V=[v,vp,....v | v; €R", (17)

is a vector of cluster prototypes (centers) to be determined, and:
2 2 T
Dia =X —Villy = (% Vi) Al i), (18)

is the square of the scalar product of the distance norm.
Minimization of the objective Function (16) is possible
only if:

1
Z‘}:l(DikA/DjkA

<i<cl<k<N, (19)

Hik =

)2/(m—1) 1
and
Zﬂ.kxk/ZMk I<i<c. (20)

Equation (20) gives vi as a weighted average of the data
elements belonging to the cluster, where weights are the
degree of membership.

Figure 4 shows the stages in the execution of the FCM
algorithm [33].

Start with
cluster number
generated from SC

Run the algorithm with
the specified parameters

¥

Calculate the validity
measure index

Calculate the
modelling LSE

Plot and compare the
results

Figure 4. Stages of the FCM algorithm execution

In accordance with the above, the results of measuring
the velocity, as well as longitudinal and transverse ultrasonic
wave attenuation with the corresponding frequency are used
as an information base for the identification of mineralogical
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varieties of iron ore. Based on these results, the acoustic
quality factor of the rock sample is calculated, and the char-
acteristic parameter S, determined by the variance and ave-
rage values of the intensity of the received ultrasonic signal
that has traveled a certain distance in the studied medium.

It has been found that when identifying 5 mineralogical
iron ore varieties, which is characteristic for the studied de-
posit, and, accordingly, dividing the obtained array of meas-
ured data into 5 clusters using the Fuzzy C-means algorithm,
it is necessary to perform on the average 22 iterations. The
change in the objective function during the operation of the
algorithm is presented in Figure 5.

Objective Function Values
T

N

o
T
I

Objective function

1 I I I ! I
0 5 10 15 20 25 30 35 40

Iteration

Figure 5. Dependence of the objective function value on the num-
ber of clustering algorithm iterations

The analysis of the scale diagrams for the membership
functions of the points — the measurement results of iron ore
characteristics for each cluster is shown in Figure 6.
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Figure 6. Diagrams of the membership function range values

The following indicators are used to assess the quality of
clustering [32]-[35]: Partition Coefficient (PC), Classifica-
tion Entropy (CE), Partition Index (SC), Separation Index
(S), Xie and Beni's Index (XB), Dunn’s Index (DI), Alterna-
tive Dunn Index (DII). The values of these indicators based
on the results of experimental studies are given in Table 3.

Table 3. Assessments of clustering quality

PC CE SC S XB DI ADI

0.6965 0.7013 0.5410 0.0046 3.9887 0.2032 0.0003

The value of the membership function of belonging to its
cluster for each studied sample point significantly exceeds
the value of the function of belonging to other clusters (num-
ber of parallel experiments in a series conducted under the
same conditions k = 9, number of series n = 24). The experi-
mental data processing results for each of the three informa-
tive data features are shown in Table 4.

Table 4. Experimental data processing results
Cochrane criterion

Sign

G calculated G tabular
Cl 0.4417 0.4748
C2 0.4326 0.4748
C3 0.4225 0.4748

For all experimental data obtained, the estimated value of
the Cochran criterion is less than the tabulated values. There-
fore, the analysis performed confirms the reproducibility of
the results obtained. The results of tests and practical appro-
bation of the method for identifying mineralogical iron ore
varieties based on the ultrasonic well logging data testify to
its high efficiency, which allows recommending the devel-
oped scientific-technical solutions for wide industrial appli-
cation at mining enterprises.

4. Conclusions

As an information base for identification of mineralogical
iron ore varieties, the results of measuring the velocity and
attenuation of longitudinal and transverse ultrasonic waves of
appropriate frequency are used, on the basis of which the
acoustic quality factor of the rock sample is calculated, as
well as the characteristic parameter S, which is determined
by the dispersion and average values of the received ultra-
sonic signal intensity, which has traveled a certain distance in
the studied environment.

An iterative method of fuzzy identification of mineralogi-
cal-technological iron ore varieties, based on the analysis of
their properties in vector space of features, allows, by minimi-
zing the sums of weighted distances between the analyzed and
reference values of ultrasonic measurement results, to attribute
them with a certain degree of belonging to the main technolo-
gical types of ores mined at the deposit, and define them as
magnetite quartzite with a confidence probability of 0.93.
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Po3nizHaBaHHs MiHepaJOTiYHUX Pi3HOBUIIB PyAH 3 BUKOPUCTAHHAM

pe3yabTaTiB yIbTPa3ByKOBHX BUMIpPIOBaHb

B. MopkyH, H. MopkyH, I'. ®@imepayep, B. Tpons, A. 'anonenko, €. boopos

Merta. BrockoHaneHHs1 BUMiproBalibHOT Ta iHpoOpMaLiitHoi 6a3u yabTpa3ByKOBHX BHMIPIOBaHb XapaKTEPUCTHK IOPIA Ui OLIHKH iX Mi-
HepaJIoriyHuX pi3HoBUAIB. [IponoHyeThCS BUKOPUCTaHHS KOMOiHALIl pe3yIbTaTiB BUMiPIOBaHb aKyCTHYHOTO SIKICHOTO ITOKa3HHKa TECTOBOTO
3pa3ka CTOCOBHO IOJOBXHIX 1 MONEPEYHHX YJIbTPAa3BYKOBHX XBHIIb, @ TAKOXK XapaKTEpHOro KoedilieHTy, o 0a3yeTbes Ha qucrepcii Ta
CepeIHbOMY 3HAaUeHHI aMILTITYA OTPUMAHOTO CHTHAILY JUII HEUiTKO] iieHTHdiKarlii MiHepaIoriqHIX 1 TEXHOIOTIYHHX PI3HOBHIB 3aJIi3HOT PyAN.
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MeTtoauka. [Tix yac NPOHNKHEHHS €TaCTUYHHUX XBWIJIb KPi3h MACHB HOPOJH BOHU IIAJAIOTHCS 3aTyXaHHIO Yepe3 IOTJIMHAHHS Ta PO3Ciro-
BaHHS €HEpTii yIbTpa3ByKoBOro curHaity. CTyIiHb 3aTyXaHHS, a TAKOX IIBUAKICTH IOIINPEHHS XBUJIb, 3AIEKUTH BiJ (i3MKO-MEXaHIYHUX Ta
XIMIKO-MiHEpaJIOTIYHUX BIACTHBOCTEH CepeloBHIINA, Yepe3 sIKe BOHU MPOXOAATh. Y poOOTi aHANi3yeThCs MOPOAA, L0 XapaKTePH3YEThCS
CKJIQTHOIO CTPYKTYpPOIO, SIKa CKJIJa€ThCs 3 BKIIOYCHb PYIM Ta OTOUYIOYOI PEUOBHHH, 3 BiAMIHHUMH (i3HKO-MEXaHIYHUMH Ta XiMiKO-
MiHEepaJOTiYHIMH BIACTUBOCTSIMH.

PesyabTatu. ITepatuBHuil MeTO HEUiTKOI iAeHTH(IKAI] MiHEpaTOTIYHUX 1 TEXHONOTIYHUX PI3HOBUIIB 3ai3HOI PYyIH, 3aCHOBaHHI Ha
aHaNi3i IXHIX BIACTHBOCTEH y BEKTOPHOMY IIPOCTOpI O3HAaK, HO3BOJISE, MIHIMI3yIOUH CyMH 3BRKCHUX BiJICTAHEH MiX aHAII30BaHHMH Ta
JIOBIIKOBUMH 3HAUCHHSIMH PE3yJIbTaTiB yJIbTPa3BYKOBHX BUMIPIOBAaHb, IPUCBOITH IM IIEBHHUII CTYIIHb HAJIEXHOCTI 10 OCHOBHHUX TEXHOJIOTI-
YHUX PI3HOBHIIB PYIH, IO BUAOOYBAIOTECS Ha POJIOBUIII, Ta BU3HAYHTH iX SIK MarHETHTOBI KBapIUTH 3 BiporixHicTio 0.93.

HaykoBa HoBm3HA. Sk iHpopManiitHa 6a3a /i ineHTH}IKALI] MIHEPAIOTIYHAX PI3HOBHIIB 3aJIi3HOT PyIM BUKOPHCTOBYIOTHCS PE3yib-
TaTH BUMIPIOBAHHS LIBHIKOCTI Ta 3aTyXaHHS MOJOBXKHIX 1 MONEPEYHUX YIbTPAa3BYKOBUX XBWJIb BiAMOBIJHOT YACTOTH, HA OCHOBI SKHX PO3-
PaxOBY€ThCS aKyCTUYHHUI SKICHUII OKAa3HHUK MOPOJM Ta XapaKTEPHUH Iapamerp, [0 BU3HAYAETHCS AUCIIEPCIEI0 1 CepeHiMU 3HAUYCHHAMU
IHTEHCHBHOCTI OTPUMAHOTO yJIbTPa3ByKOBOTO CHI'HAILY, SIKHil IPOMIIIOB NEBHY BiZICTaHb Y BUBYCHOMY CEPEIOBHILII.

IIpakTHyHa 3HaAYUMicTb. Pe3ynpTaTi TeCTyBaHb Ta MPaKTUYHOI anpobarii MeTony igeHTudiKanii MiHepaJOTiyHUX Pi3HOBUIIB 3ai3HOL
pPYAX Ha OCHOBI JTaHHWX YJIbTPa3BYKOBOTO KapOTaKy CBEPIJIOBHH CBIiqUaTh IPO HOTo BHCOKY €(EeKTHBHICTB, IO JO3BOJISIE PEKOMEHIYBATH
Ppo3po0IIeHI HAyKOBO-TEXHIYHI PIMIEHHs IS IIUPOKOTO IIPOMHUCIIOBOTO 3aCTOCYBAHHS Ha FpHUYOJ00YBHUX MiAPHEMCTBAX.

Knrwuosi cnosa: 3anizna pyoa, ioenmugbixayis, yiompasgyK, Heuimka Kiacmepusayis
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