Reservoir characteristics of the Miocene age formations at the Allas Dome, Hamrin Anticline, Northern Iraq

Doaa T. Fadhisti, Wafaa Anmar Yonus, Mustafa A. Theyah

1 University of Samarra, Samarra, 34010, Iraq
2 Salahuddin Education Directorate, Tikrit, 34001, Iraq
*Corresponding author: e-mail geologistmustaf@gmail.com, tel. +009647707853636

Abstract

Purpose. This study evaluated the reservoir characteristics and determined the formation lithology of Dhiban, Euphrates, and Serikagni in the Hamrin wells (Hr-2 and Hr-9).

Methods. The well logs have used the gamma ray log, the porosity logs, (density, neutron, and sonic logs), and the resistivity logs. The data were converted into digital values by using the Didger program. The formation lithology was determined on the basis of the density, neutron logs, and gamma ray log.

Findings. Lithology consists of limestone, dolomite, dolomitic limestone, and marly limestone with the addition of anhydrite. Petrophysical characteristics, namely, volume of shale, porosity, water saturation, and hydrocarbon saturation were calculated and evaluated. The total volume of water and hydrocarbon for reservoir layers were also determined.

Originality. Dhiban, Euphrates, and Serikagni the formations in the Hamrin field were divided into two potential units, depending on the petrophysical analysis of the well logs in reservoir unit – A(RU-A). Thus, the total thickness of the unit (86.25 m), and average porosity (0.14), the hydrocarbon saturation (0.11), and the volume of shale (14.25). While the Reservoir unit-B (RU-B). The total thickness of the unit (50 m), average porosity (0.09), the hydrocarbon saturation (0.26), and the volume of shale (49).

Practical implications. The RU-A reservoir unit was characterized by high porosity and high hydrocarbon saturation regardless of the thickness in both wells.

Keywords: limestone, oil, dolomite, petrophysical, Serikagni, Euphrates, Dhiban

1. Introduction

The stratigraphic sequences of Miocene age in Iraq depend on the lithology, fossil content, sedimentary environment, and tectonic effect. Miocene includes eleven stratigraphic units: Serikagni, Euphrates, Ghar, Dhiban Anhydrite, Jeribe, Fatha, Nfayil, Injan, Mukdadiya, Govanda Limestone, and Red Bed Series [1]. The early-medium Miocene cycle contains the formations of Ghar, Euphrates, Jeribe, Dhiban, and Serikagni intertwined with each other with the different thicknesses of these formations [2]. The Miocene formations are considered one of the important formations as they form oil reservoirs, the Allas dome within the northern Hamrin field is a good closed reservoir system for preserving and collecting hydrocarbons [3]. The Euphrates Formation contains raw materials represented by Silica, Alumina and Calcite, which it is used in the manufacture of Portland cement according to the Russian classification [4]. The Euphrates formation consists of carbonate rocks with some evaporites deposited in a lagoon and shallow environments [5]. The Euphrates Formation consists of limestone, dolomitic limestone, and dolomite deposited in a shallow, sloping, and marshy environment, that is located within the Rimmed plat-
Various programs were used in drawing logs and lithology. Data were processed using Didger-3, Logplot-7, and Excel. In the study, the used logs are the gamma ray (GR) log, compensated neutron log (CNL), formation density log (FDC), sonic log (well compensated-type, BHC), caliper, resistance logs, and core data (porosity and permeability).

### 3. Results and discussion

**3.1. Lithology determination from porosity logs**

Porosity logs (density, neutron, and sonic) are significantly affected by the formation lithology, clay content, and gas. The logs for sonic, neutron, and density are typically used interconnectedly rather than alone [10]. Determining the lithology requires readings from the neutron (ON) and density (Pb) logs that was obtained from NOC [8], [9]. The points are projected onto a profile prepared by Schlumberger [11] and shown in Figure 2 and 3.

![Figure 2. An N-D profile for lithology of Hr-2 well](image2)

![Figure 3. An N-D profile for lithology of Hr-9 well](image3)

The majority of the points fall in the limestone range with interventions from dolomite and anhydrite, with a density ranging from 2.16 to 2.95 g/cc in the Hr-9 well and from 2.26 to 2.95 g/cc in the Hr-2 well. Density, neutron, and GR logs are used to identify the lithology by Logplot-7, Didger-3. The Dhiban formation at Hr-2 well has two depths in 540.5-607.8 m and a thickness of not exceeding 67.3 m. This section consists of permeated anhydrite. Figure 4 shows the thin layers of the dolomitic limestone. By contrast, in the Hr-9 well, the Dhiban Formation extends from 558.0-590.5 m and with a thickness of not exceeding 32.5 m. This section consists of limestone, dolomite with anhydrite.

The most important fossils identified in this section by the NOC [9] are miliolids with other shell fragments and Gastropoda. The Euphrates formation in the Hr-2 is well-defined between two depths from 607.8-616.0 m and with a thickness of not exceeding 8.2 m. This section consists of limestone and dolomite (Fig. 4).
By contrast, in the Hr-9 well, the Euphrates formation lies in the depths of 590.5–667.5 m with a thickness of not exceeding 77 m. This formation consists of sequences of limestone, dolomite, and marly limestone with anhydrite (Fig. 5). The most important fossils in this section are miliolids, Rotalids, and shell fragment NOC [9]. The Serikagni Formation in the Hr-2 well is determined to be between 616 and 676 m with a thickness of not exceeding 60 m. This section consists of sequences of limestone and marly limestone with anhydrite (Fig. 4). The most important fossils identified in this section by the NOC [8] were miliolids, shell fragment, and Globigerina. By contrast, this formation is defined in the Hr-9 well between depths of 667.5 and 695 m with a thickness of not exceeding 60 m. This section consists of sequences of limestone and marly limestone with anhydrite (Fig. 5). The most important fossils in this section identified by NOC [9] are Favruna, Globigerina, bryozoan, Textularia, and other shell fragments.

3.2. Reservoir properties

To determine the reservoir properties of the Hr-2 and Hr-9 wells within the study area, the petrophysical properties of the reservoir should be recognized and evaluated.

3.2.1. Volume of shale

The GR log is used to determine and calculate the volume of shale ($V_{sh}$), because the GR log responds to the radioactive materials stationed in the shale rock. It is imperative that the gamma ray index IGR, determined by using equation of [12]:

$$IGR = \frac{GR_{log} - GR_{min}}{GR_{max} - GR_{min}},$$

where:

- $GR_{log}$ – gamma ray reading of formation;
- $GR_{min}$ – minimum gamma ray reading (clean sand or carbonate);
- $GR_{max}$ – maximum gamma ray reading (shale).

The equation of [13] for older rocks was used to determine the shale volume shown in Table 2.

$$V_{sh} = 0.33 \cdot \left(2 \cdot (2 \cdot IGR) - 1 \right).$$

3.2.2. Porosity

Porosity is the ratio between the volume of voids in the rock to the total size of the rock. Porosity can be classified as primary and secondary porosities depending on the time of its formation [14]. Several methods are used to calculate porosity either from the sonic log or from the density and neutron logs of shale free zone [15]. In depths where the ratio exceeds the volume of shale 10%, the logs (sonic, density and neutron) will record high porosity [16] is corrected to remove the effect of (11) while neutron log its values are corrected for depths of the recorded $V_{sh}$ greater than 10% [17] shown in Table 2.

$$\phi_{corr} = \frac{\Delta t_{log} - \Delta t_{ma}}{\Delta t_{fl} - \Delta t_{ma}} \cdot \left(\frac{\Delta t_{log} - \Delta t_{ma}}{\Delta t_{fl} - \Delta t_{ma}}\right)_{V_{sh}},$$

where:

- $\phi_{corr}$ – corrected sonic porosity;
- $\Delta t_{log}$ – interval transit time in the formation;
- $\Delta t_{ma}$ – interval transit time in the matrix;
- $\Delta t_{fl}$ – interval transit time in the fluid in the formation;
- $V_{sh}$ – volume of shale.
\( \bar{D}_{corr} = \bar{D} - (V_{sh} \cdot \bar{D}_{sh}) \),

where:

- \( \bar{D}_{corr} \) - corrected porosity is derived from density log for clean rocks;
- \( \bar{D}_{sh} \) - density porosity for shale.

\( \bar{N}_{corr} = \bar{N} - (V_{sh} \cdot \bar{N}_{sh}) \),

where:

- \( \bar{N}_{corr} \) - corrected porosity is derived from Neutron log for no clean rocks;
- \( \bar{N}_{sh} \) - Neutron porosity for shale.

In addition, the total and secondary porosities can be calculated [18] shown in Table 2.

\[ \bar{N}_{N-D} = \frac{\bar{N} + \bar{D}}{2} \]  \hspace{1cm} (6)

The effective porosity:

\[ SPI = \bar{N}_{N-D} - \bar{D}_{corr} \]  \hspace{1cm} (7)

### 3.2.3. Water and hydrocarbon saturation

Water saturation \( S_w \) is the ratio between the volume of voids filled with water to the total volume of voids of the rock. The hydrocarbon saturation \( S_h \) is the remainder of the volume of voids in the rock that can be calculated [19]. \( S_w \) is calculated in the range not contaminated by mud and the \( S_w \) contaminated by mud \( S_{w \text{m}} \) to determine the movement of hydrocarbons [20]. Table 2 represents the lower and upper limits of \( S_w \). The total volume of water is calculated in the noncontaminated \( B_{w \text{nc}} \) range and \( B_{w \text{m}} \) contaminated range with mud.

The total volume of hydrocarbons \( B_{w \text{m}} \), which include moving hydrocarbons \( M_{w \text{m}} \) and nonmoving hydrocarbons, is calculated [20], [21] as shown in Table 2.

\[ S_w = \left( F \cdot \frac{R_{w \text{m}}}{R_t} \right)^{\frac{1}{n}} \]  \hspace{1cm} (8)

Water saturation in the invaded zone (\( S_{w \text{m}} \)) can be simply calculated from the same equation above by replacing \( R_w \) with \( R_{w \text{m}} \) (mud filtrate resistivity available from well log headers) and \( R_t \) with \( R_{w \text{m}} \) (measured resistivity of the invaded zone):

\[ S_{w \text{m}} = \left( F \cdot \frac{R_{w \text{m}}}{R_{w \text{m}}} \right) \]  \hspace{1cm} (9)

Than can be calculated the hydrocarbon saturation, by using the following equation:

\[ S_h = 1 - S_w \]  \hspace{1cm} (10)

Moveable hydrocarbon saturation was calculated by using following equation:

\[ M_{w \text{m}} = S_{w \text{m}} - S_w \]  \hspace{1cm} (11)

Whereas total hydrocarbon volume was calculated from Schlumberger (1987) as follows equation:

\[ B_{w \text{m}} = S_h \cdot \bar{D}_{N-D} \]  \hspace{1cm} (12)

### 3.2.4. Calculation of pore-throat structure

Pore-throat structures are defined as passages that facilitate the passage of fluid through the voids or from one pore to another [22]. These structures are calculated by the injection of 35% mercury saturation [17]. The drawn relationship between porosity and permeability is obtained from the core analysis of NOC [8], [9]. The points that fall on a single-logarithmic paper characterize the pore-throat structure. Figure 6 and 7 show the most important types of pore throats in the formation rocks of Dhiban, Euphrates, and Serikagni within the Hr-2 and Hr-9 wells.

### 3.2.5. Calculation of reservoir quality index and flow zone RQI, FZI

Dependent on the data obtained from NOC [8], [9] the points were put it onto a logarithmic profile depend on the porosity values (\( ZD \)) and the flow quality factor (RQI) values [23].
A straight line was drawn at an angle of inclination (1). permeability relationship with porosity values for evaluation of reservoir quality [24]. It was found from the current study of Hr-2 and Hr-9 wells that the most common porosities in the rocks of the study area formations are Intraparticular, Moldic, Intercrystalline, Vuggy and Interpartical as shown in Figure 8 and 9. This indicates that the type pores that control on quality of the tank of one type to the pores throat type, because they form pathways for the movement of hydrocarbons.

3.2.6. Reservoir units

Through the petrophysical analysis of the reservoir properties by using logs for the wells of the study area (Table 2). Depending on effective porosity, oil saturation and volume of shale can be divided the formations of study area into two reservoir units (RU-A and RU-B) as shown in Figure 10 and 11.

1. Reservoir unit (RU-A): the thickness of this unit ranges (89.5 m) at the Hr-2 well east of the Allas Dome and (83 m) at the Hr-9 well located to the west of the dome as shown in Figure 10 and 11, this unit is characterized by a porosity is between (0.03-0.28) at a range of (0.12) at the Hr-2 well, while the porosity in this unit is between (0.02-0.3) at a range of (0.15) at the Hr-9 well, while the oil saturation of this unit is between (0.038-0.36) at a range of (0.11). At the Hr-2 well, at the Hr-9 well, oil saturation is between (0.04-0.3) at a range of (0.10) while the volume of shale of this unit is between (0.4-77.3%) at a range of (15.5%) at the Hr-2 while the volume of shale in the well Hr-9 is between (0.5-66%) at a range (13%).

2. Reservoir unit (RU-B): the thickness of this unit (46 m) at well Hr-2 and thickness (54 m) at well Hr-9 as shown in Figure 10 and 11. This unit is characterized by porosity is between (0.0009-0.766) at a range (0.10) at the Hr-2 well while at the Hr-9 well the porosity is between (0.002-0.23) at a range (0.08) as it is characterized by oil saturation at the well Hr-2 is between (0.01-0.4) at a range (0.32) at the Hr-9 well, the oil saturation is between (0.04-5.49) at a range (0.25), the volume of shale at the Hr-2 well is between (1.4-98%) at a range (58%) while at the Hr-9 well, the volume of shale is between (6.98-99%) at a range (40%).
2. The formations can be divided into two reservoir units (RU-A and RU-B) according to the effective porosity, oil saturation, and volume of shale. Reservoir unit –A (RU-A) is: the total thickness of the unit (86.25 m), average porosity (0.14), hydrocarbon saturation (0.11), and the volume of shale is (14.25). While Reservoir unit-B (RU-B) is: the total thickness of the unit (50 m), average porosity (0.09), the hydrocarbon saturation (0.26), and the volume of shale (49). The best reservoir unit is RU-A, regardless of the heterogeneity of the thickness of both wells.

3. There are several types of porosity associated with formations, they are distinguished throughout the profile relationship between porosity values (Z0) and the Reservoir quality index (RQI), such as: Intrapartical, Moldic, Intercrystalline, Vuggy and Interpartical. While the Pore-throat type is dominant mesopores and macropores.

**Acknowledgements**

Thanks to the North Oil Company in Iraq, Department of Geology, for their support in contributing to complete this research.

**References**


**Figure 10. Interpretations of logs for HR-2 well**

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Zone</th>
<th>Lithology</th>
<th>V.d</th>
<th>SPI</th>
<th>ND</th>
<th>SW</th>
<th>RVO</th>
<th>BVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 11. Interpretations of logs for HR-9 well**

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Zone</th>
<th>Lithology</th>
<th>V.d</th>
<th>SPI</th>
<th>ND</th>
<th>SW</th>
<th>RVO</th>
<th>BVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>RU-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>RU-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusions

Depending on the petrophysical analysis of well logs of the Dhiban, Euphrates, and Serikagni formations in the Hamrin wells (Hamrin-2 (HR-2) and Hamrin-9 (HR-9)): 

1. The lithology includes limestone, dolomite, dolomitic limestone, and marly limestone with anhydrite of formations rocks.
Результа́ти. Встановлено, що літологія нефтегазових пластів складається з вапняку, доломіту, пористої частини, що складається з води, сульфатів, углів, а також вуглеводнів. Визначено загальну потужність покладу — 86.25 м, середню пористість — 0.14, насиченість вуглеводнів — 0.11, а обсяг сланців — 14.25. В той же час, у пластовій частині — 0.09, насиченість вуглеводнів — 0.26, а обсяг сланців — 49.

Наукова новизна. Вперше для умов нафтогазових пластів Дібан, Євфрат та Серікагні виявлені їх петрофізичні характеристики, фізико-механічні властивості та особливості литологічної будови масиву.

Ключові слова: вапняк, нафта, доломіт, петрофізичний, Серікагні, Євфрат, Дібан