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ABSTRACT 

Purpose. Generalization of numerical modeling of geomechanical processes in the vicinity of mine workings by 

finite elements method and making recommendations for substantiation of suitable construction and behavior of rock 

massif physical model. 

Methods. Software packages SolidWorks Simulation (COSMOS/М) and ANSYS are used for geomechanical tasks solution. 

Findings. Solutions of geomechanical tasks dealing with topical issues of estimating stress-strain state of rock massif 

around underground workings of different functions are given. Data on the rock massif stress-strain state are received 

and recommendations on adequate and authentic reflection of its structural peculiarities (stratification and fracturing) 

are made. Physical model of rock condition (elastic, elastic-plastic, rheological diagrams and complete diagram of 

deformation taking into account weakening and fracturing) is presented. 

Originality. New data about the mechanism of movement processes of coal-bearing massif around mine workings 

considering stratification and cracks content, limit and out-of-limit deflection state in separate areas, and also the 

impact of rheological rock properties are received. 

Practical implications. Complex of geomechanical tasks solutions allow to increase credibility of rock pressure 

manifestations prediction and substantiate technical solutions for effective and safe operations at coal mines. 

Keywords: rock massif , underground working, finite elements method, stresses, deformations, stratification, cracks 

content, physical model, rock pressure 

 

1. INTRODUCTION 

Numerical solutions of applied tasks have always been 

the matter of concern for the best mathematicians. Obtaining 

mathematical description of a phenomenon or process and 

their research resulted in the birth of a separate field in ap-

plied mathematics – mathematical physics. Further, through 

development and improvement of various tasks solution, 

this direction of the theoretical analysis was transformed 

into a new modern technology and methodology of theoreti-

cal research which has received the name of computing 

experiment. Computing experiment is based on mathemati-

cal modeling, its theoretical base being applied mathemat-

ics, and technical base – powerful computing machines. 

When solving tasks of geomechanics, we constantly 
face the problem of computing systems with a complex 
geometrical configuration and irregular physical structure. 
The massif and its rocks have a great number of character-
istics which can be taken into account only by finite-
difference schemes of calculations during mathematical 
modeling. Nowadays, the finite elements method (FEM) 
(Gallager, 1984) has become the standard de facto in solu-
tion of geomechanical tasks. However, when solving com-
plex geomechanical tasks dealing with multi-factor charac-
ter of rock mechanical properties, heterogeneity of massif 
structure and geometrical parameters of a mine-technical 
object, it is possible to combine FEM with methods of 
boundary and discrete elements (Samarskiy, 1989) to ob-
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tain a more reliable solution. The main complexity of such 
combination application consists in objective reflection of 
physical essence of the process on the border of model 
elements conjugation which are investigated by various 
finite-difference methods. 

SolidWorks Simulation (COSMOS/M), FLAC 2D/3D, 
ABAQUS and ANSYS are usually applied for the solu-
tion of geomechanics problems. Nowadays, ANSYS 
(Chigarev, Kravchuk, & Smalyuk, 2004) has the widest 
opportunities for modeling materials, conditions of ob-
jects’ interaction, solutions of nonlinear tasks and prob-
lems of destruction mechanics. Also this software is 
distinguished by the high level of computing algorithms 
realization for various conditions of the massif behavior 
and other features of modeling. 

FEM allows to describe a continuous quantity by the 
model that consists of separate areas (Gallager, 1984; 
Zienkiewicz, Taylor, & Zhu, 2005). The developed theo-
retical fundamentals of creating a discrete model of a con-
tinuous quantity (Sekulovich, 1993) involve a number of 
consecutive actions with finitesimal determination of the 
design parameter values inside the area under study. It is 
proved (Zenkevich & Morgan, 1986) that FEM can be 
considered as the general method of numerical solution for 
various types of differential equations including problems 
of geomechanics where establishment of areas of limit and 
out-of-limit state of a massif according to the most used 
criteria of destruction is very important (Matvienko, 2006). 

The solution of geomechanics tasks boils down to the 
following main stages: 

– generalized problem definition (solution type, a 
general view of the model, considered loadings, etc.); 

– creation of the model geometry  suitable for usage 
in FEM; 

– creation of the final elements grid for the constructed 
geometry; 

– application of boundary conditions to the geometrical 
model (fixing on the boundary or boundary loadings); 

– numerical solution of equation system; 
– analysis of the received results.  
Peculiarities of geomechanical problems solution can 

be divided into three main groups (Kuznetsov, Ardashev, 
& Filatov, 1987): 

– taking into account massif structure (its lithotypes 
significantly differ in mechanical properties); existence 
of weakening surfaces both on planes and inside any rock 
layer; loss of bonding on weakening surfaces; natural 
fracturing systems of rocks together with influence of 
other weakening factors; 

– considering not only elastic plastic state, but also 
so-called stages of rock weakening and loosening in 
certain areas of the massif; in some cases, to increase the 
model adequacy it is necessary to reflect large-scale 
geomechanical processes of underworked strata move-
ment accompanied by the formation of collapsed rock 
zones with joint-block displacement (artificial fracturing); 

– geomechanical processes in rock massif depend up-
on relative position of mine workings; therefore, it is 
necessary to take into account their interaction, in view 
of time and space location parameters change in the 
course of mining operations; geomechanical processes in 
the massif and its interactions with underground con-
structions develop in time which makes it reasonable to 
apply rheological approach to solution of some tasks. 

In solving geomechanical problems, not only peculi-
arities of the massif structure and behavior are important 
but also adequate account of constructive and technolog-
ical features of underground workings’ supporting facili-
ties, mechanical properties of fixturing materials (includ-
ing limit state) and the modes of their interaction with 
surrounding marginal rocks.The above mentioned fea-
tures of statement and solution of geomechanical tasks 
are more or less reflected in the modern research on the 
basis of FEM. 

A great number of tasks to solve are focused on study-
ing specifics of stress-strain state (SSS) of the massif (for 
instance, Prusek, 2010; Manoj, 2010; Yu, Kong, Niu, 
Zhu, & Jing, 2013; Coggan, Gao, Stead, & Elmo, 2012), 
the choice of technological parameters for mineral depos-
its’ mining (Zhang, Zhang, Hou, Wu, & Zhou, 2014; Shi, 
Liu, & Wang, 2015) and improvement of constructive 
schemes of mine workings support, including resource-
saving ways of strengthening the marginal massif by 
anchor support (Manoj, 2010; Yu, Kong, Niu, Zhu, & 
Jing, 2013; Coggan, Gao, Stead, & Elmo, 2012; Garg & 
Jaiswal, 2015; Franklin, Fraley, & Burnham, 1974). 

2. STRATIFICATION AND FRACTURING 

FACTORS IN MODELING ROCK 

MASSIF BEHAVIOR 

Bearing in mind the above peculiarities of geomechanical 
tasks solution, let us consider some research results obtained 
at the Underground Mining Department of the National 
Mining University which are aimed at solving problems of 
increasing stability of underground mine workings. 

Taking as the example in-seam mine working support, 
we will analyse aspects of modeling stratification and frac-
turing of the surrounding massif. Stratification substantially 
changes distribution of stresses both in the vicinity of a 
working contour, and in the zones adjoining to the borders 
of rock layers. At the same time, the degree of stratification 
impact on stresses fields for various components can alter 
from 10 to 270% (Symanovych, Ganushevych, & Cher-
vatyuk, 2010; Kovalevska, Illiashov, Fomychov, & Cherva-
tuk, 2012; Bondarenko, Kovalevs’ka, & Fomychov, 2012). 

For descriptive reasons, let us analyze diagrams of 

stresses intensity   for two shapes of cross-section of 

in-seam mine working (Fig. 1). Changes of the field  in 

both cases are considerable not only around the mine 
working, but also on the seam surface. Besides, the less 
power of lithotype, the more pronounced the changes. 

Stratification in calculation model influences sepa-
rate components of stresses differently, even when 
solving rather simple tasks. For instance, we will ana-
lyze the influence of stratification on distribution of the 

horizontal   and vertical stresses  , received as a 

result of assesing stability of a single in-seam working 
(Fig. 2). Isolines have a pronounced intermittent nature: 
alteration of stresses gradient zones is observed on the 
boundaries of rock layers, in some areas with a change 
of sign. This indicates that in certain conditions, if we 
take stratification into account, the contribution of hori-
zontal stresses to the limit state of rocks can surpass the 
influence of vertical stresses considerably. Therefore, 
rock pressure cannot be treated as a linear function 
directly proportional to the weight of a rock pillar over 
the mine working. 
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(а) 

 

(b) 

 

Figure 1. Distribution of stresses σ intensity in stratified massif nearby in-seam mine working with different dome shapes: 

(а) support MYS-А3 (Mechanized Yielding Support); (b) support BTS-2 (Buckled Triangled Support) 

(а) 

 

(b) 

 

Figure 2. Distribution of horizontal (a) and vertical (b) stresses in stratified massif nearby in-seam mine working 

Stratification influences the diagram of vertical 

stresses absolutely in a different way: formation of com-

pressive and tensile zones practically does not depend 

upon the structure of rock massif. Minor change of such 

zones outlines does not lead to stresses growth in abso-

lute values within their limits. 

Moreover, rock layers have various thickness and 

mechanical properties, that is why it is necessary to 

change conditions of contacts on the seam planes to in-

crease adequacy of the received results. Generally, we 

can distinguish three types of such contacts: contact of a 

rigid type, contact with layers’ slipping and the contact 

determined by friction force. Application of any type of 

contact can lead to qualitative and quantitative changes 

of stresses distribution pattern. 

So, diagrams of stresses intensity   (Fig. 1) show 

clearly how the choice of contact can produce an impact 

taking into account friction for all boundaries of litholog-

ic differences. Diagrams of  contain areas where “rip-

ples” in the stresses field are clearly visible. This effect is 

caused by specifics of the numerical methods applied for 

determination of equilibrium condition of the computa-

tional scheme on the contacts of its separate elements. 

This effect has strictly localized zones of manifestation 

which completely coincides with finite elements whose 

separate units belong to the contacting surface. Appear-

ance of this effect in most cases testifies that the compu-

tational area is on the boundary of transition from condi-

tion of static balance to conditions of dynamic state. If 

the rock layer thickness is one or more orders less than 

width of the model itself, all rock volume gets involved 

in this phenomenon. The described peculiarity is often 

used for modeling conditions for contacts with friction 

force when a pseudo-layer with special deformation char-

acteristics is placed between “real” lithotypes. It allows to 

emulate interaction of separate elements of the model in 

realistic conditions of rigid contact and at the same time 

not to go beyond static balance of the whole system. 
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Other conditions of adjacent lithotypes’ contact are 

presented in diagrams of stresses in Figure 3. For a case 

of rigid contact at a moderate interval of changing layers’ 

mechanical characteristics, the distribution pattern of   

substantially coincides with diagram of   for a model 

that does not take stratification into account. On the con-

trary, in conditions of layers slipping (violation of grip 

between them) the pattern of stresses  essentially dif-

fers from the model of uniform massif. Only one condi-

tion of layers’ slipping has completely changed the struc-

ture of stresses distribution in the coal seam; the level of 

  in coal layer has become much higher than that in the 

roof and bottom rocks, and its influence on the stability 

of mine working has sharply increased. Also distribution 

of   in sides and bottom of mine working has changed 

resulting in the decrease of their stability. 

Main conclusion: it is proved for the first time that 

modeling of rock massif stratification is insufficient for 

adequate description of its real state; it is necessary  

(by way of mine observation and laboratory research) to 

simulate interaction conditions related to contacts of 

adjacent lithologic differences, without violating the 

fundamental principle of static balance of the whole 

geomechanical system. 

 

(а) 

 

(b) 

 

Figure 3. Distribution of stresses intensity σ in stratified massif around in-seam mine working for conditions of: (а) rigid contact 

between lithotypes; (b) slipping over bedding surfaces 

Now let us consider the influence of the massif frac-

turing on stress-strain state (SSS) of geomechanical 

models. Figure 4 contains examples of distribution of 

movements and vertical stresses during modeling of 

fracturing in various computing experiments. Fracturing 

was considered as a macrocharacteristics for in-seam 

mine working in the area beyond the zone affected by 

stoping operations (Fig. 4a). As rock layers of immediate 

roof and bottom had a pronounced system of cracks fo-

cused parallel to the bedding plane and during computing 

experiment it was necessary to study the influence of this 

system of cracks on the working contour shifts, we de-

cided to model these violations of continuity as a system 

of rock benches with thickness equal to the average dis-

tance between cracks. The received results have shown 

sufficient degree of calculation model adequacy in rela-

tion to actually observed rock pressure manifestations. 

During the computational experiment on detecting 

rock pressure manifestations specifics after stoping face 

passage (Fig. 4b), fracturing was treated as microcharac-

teristics and was modeled considering coefficients that 

diminish mechanical characteristics of fractured for-

mations. The choice of such approach was defined by 

parameters of cracks content system and complexity of 

the calculation model. Firstly, we observed two-three 

systems of cracks with small average distance between 

them in rocks of immediate roof and bottom. Modeling 

of so intensive fracturing leads to significant increase in 

the level of calculation model complexity and reduces 

computational stability. Secondly, existence of a large 

number of elements (rock blocks) which interact in com-

plicated contact conditions, result in manifold increase of 

calculation time. As a result, additional modeling of frac-

turing substantially complicates calculation process, and 

its influence on stresses distribution in calculation area on 

the whole is rather uniform and is not predominant. 

A more detailed analysis of the massif fracturing influ-

ence on its state in the vicinity of in-seam mine working 

was conducted using a real example of a roadway support 

in the following mine-and-geological conditions: coal 

seam of average thickness  m5.1m  and small hardness 

(Protodyakonov scale of hardness 5.10.1 f ); rocks of 

immediate roof and bottom with average hardness 

75f ; hard rocks of main roof and bottom with hard-

ness 119f . In spite of the fact that roadway is sup-

ported beyond the zone of stoping operations influence, 

there appeared serious problems with ensuring stability 

of hard rocks and rocks of average hardness (as early as 

during mine working drivage) because of intensive frac-

turing (two mutually perpendicular crack systems with 

average distance between them m5.0m1.0  Cl ) in 

immediate roof and the lower layer of the main roof. 
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(а) 

 

(b) 

 

Figure 4. Deformation of massif fracturing around a single in-seam mine working (a) and distribution of horizontal stresses (b) 

in the massif behind the stoping face during block collapse of roof rocks above the worked-out area 

For the analysis of a mine-and-geological situation 

and substantiation of technological solutions to ensuring 

stability of in-seam roadway, three groups of experi-

ments have been conducted to compute: 

– the real structure of the surrounding massif, but 

without taking into account its fracturing; such model 

served as a base for comparing fields of SSS components 

distribution; 

– the same, but taking into account two systems of 

fracturing as macrocharacteristics at the average distance 

between cracks m5.0Cl ; 

– the same at m3.0Cl . 

Also an attempt to simulate massif fracturing at 

m1.0Cl  has been made, but computing process was 

extremely unstable because of a very complicated calcu-

lation area. 

Figure 5 presents a diagram of vertical stresses у  in 

the set sequence of calculations performance. At the 

same time let us pay attention to the parameters change 

in the three main zones of rock pressure anomalies: areas 

of unloading in the roof and bottom, area of concentra-

tions у  in the sides of the roadway. 

 

(а) 

 

(b) 

 

(c) 

 

Figure 5. Diagrams of vertical stresses in foliated coal-bearing strata around in-seam roadway without taking into account frac-

turing (a) and with taking into account the average distance between cracks lc = 0.5 m (b) and lc = 0.3 m (c) 

If there is no fracturing in the roof of mine working, 

an unloading zone у  of the dome shape is clearly 

traced, which to some extent confirms a classical hypoth-

esis of Prof. M.M. Protodyakonov. Let us estimate the 

sizes of the arch by the criterion of horizontal and verti-

cal compression stresses absence  0, ух  in view of 

the fact that the massif with intense development of two 

fracturing systems is not able to resist tensile forces. 

According to such condition, height of the arch was equal 

1.0 – 1.1 m, and its width 3.2 – 3.4 m (Fig. 5a). An abso-

lutely different picture is observed when we consider 

roof fracturing (Fig. 5c): height of the arch has increased 

to 7.5 m at m5.0Cl  and to 8.6 m at m3.0Cl ; 

width of the arch has changed not so significantly – to 

3.9 m at m5.0Cl  and to 4.8 m at m3.0Cl . These 

data confirm the manifold growth of unstable roof rock 

which creates high loading on mine working support in 

case of collapse, despite placement in the rocks of aver-

age and high hardness. 

The similar situation characterised by significant 

increase in depth of unstable rocks area is observed in 
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the bottom of roadway that involves active develop-

ment of such geomechanical event as bottom rocks 

heaving. On the contrary, originally high (without 

taking into account fracturing) abutment pressure in 

mine working sides repeatedly decreases, which is 

caused by the dominating influence of fractured rocks 

with very low deformation characteristics. 

Thus, in geomechanical models reflecting natural 

fracturing of the massif at macrolevel, the distribution 

pattern of SSS components essentially changes, and the 

main complexity consists in ensuring appropriate sta-

bility of computing process which is defined by the 

computing power of electronic computing machine. 

As a result, a new approach has been proposed to 

searching for a compromise between adequacy of massif 

fracturing display and possibility of stable conducting of 

computing experiment, division of modeling natural 

fracturing technology into macro- and microlevels. The 

preference is given to geometrical modeling of cracks 

content systems, i.e. to the situation that exhausts tech-

nical capabilities of stable conducting of computing 

experiment. 

3. SELECTING PHYSICAL MODEL 

OF THE ROCK MASSIF CONDITION 

As has been noted earlier, besides structural features 

of a massif in the working vicinity, the degree of reliable 

reflection of geomechanical processes essentially de-

pends upon the choice of this or that physical behavior 

model of the rock and bolting constructions: elastic or 

elastic-plastic condition, the full deformation diagram 

taking into account stages of weakening, fracturing or 

plastic yielding, considering time factor in rheological 

models. In each case, it is necessary to reasonably choose 

the type of the task to solve as unjustified complication 

of the physical model often leads to failures during com-

puting process. 

To distinguish the results of solving elastic and elas-

tic-plastic tasks we will use as an example estimation of 

stability of overworked drainage ventilating roadway 

during the period of stoping face passing below. Figure 6 

shows the corresponding diagrams of stresses intensity 

  in foliated coal-bearing massif of poor rocks. Differ-

ences (both in terms of quality and quantity) in the nature 

of stresses intensity distribution in the main zones of 

calculation area are accurately shown. 

Firstly, the active bend of rock layers which during 

the solution of an elastic task generates a splash in 

stresses   3 – 5 times higher than those for an elastic-

plastic task is traced in the roof of a working seam near 

stoping face. This physical model reflects more ade-

quately increased deformability of poor layers of the 

above-the-coal strata which, due to their mechanical 

properties, “smooth out” anomalies of rock pressure 

ahead and behind the stoping face. Such situation pro-

motes localization of the main roof active displacement 

at the height of 5 – 6 thicknesses of the coal seam 

(which approximately corresponds to the data obtained 

from mine supervision) while for elastic model, the 

intensive bend with weakening of rock layers takes 

place along all the height of calculation area (up to  

24 thicknesses of the coal seam). 

 

(а) 

 

(b) 

 

Figure 6. Diagrams of stresses intensity σ in foliated massif of poor rocks around overworked drainage roadway during  

solution of elastic (a) and elastic-plastic (b) tasks 

Secondly, in the vicinity of a ventilating drainage 

roadway placement, the elastic solution of a task gives 

such rock pressure anomalies which sufficiently (4 – 5 

times) exceed similar parameters during solution of elas-

tic-plastic task; concentrations  also decrease on aver-

age by 1.5 – 2 times. 

Differences (for the considered two physical models) 

in the condition of the surrounding massif certainly affect 

diagrams of stresses intensity in the elements of bolting 

system of a ventilating drainage roadway (Fig. 7). 

Change of anomalies’ parameters of diagram   in elas-

tic-plastic task is distinctly shown as: 

– decrease in size and extent of concentrations   ac-

tion areas in the armature of resin-grouted roof bolts in 

the roof of mine working and more active loading of side 

anchors; 

– majority of areas along the length of frame support 

props exiting from a plastic condition; 

– increase in loading of the frame beam because of 

plastic deformations of roof rock layers. 
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(а) 

 

(b) 

 

Figure 7. Diagrams of stresses intensity σ in elements of bolting system of overworked drainage roadway during solution of  

elastic (a) and elastic-plastic (b) tasks 

Following the results of task solution, we established 

regularities of change in the state of the surrounding 

massif and overworked roadway support considering 

inelastic deformations of this geomechanical system 

components whose influence changes SSS parameters 

several times. Thus, substantiation of physical model 

choice of the investigated geomechanical system is essen-

tial for increasing adequacy and reliability of computa-

tional experiment results. 

It is necessary to reflect processes of weakening and 

destruction of some lithotypes in certain areas around 

mine workings which also increases adequacy and relia-

bility of computing experiment results during forecasting 

of the massif behavior in the wide range of mine-and-

geological conditions. 

This type of tasks is solved by means of the physical 

model reflecting the so-called complete diagram of rock 

deformation from the initial stage of loading to the stage 

of “ruining” destruction. Usually, such physical model is 

approximated by three linear areas on the diagram of 

“stress-relative deformation”: the first is an elastic-plastic 

stage of deformation up to the limit of rock uniaxial 

compressive strength; the second is rock weakening stage 

accompanied by decrease in its resistance to compres-

sion; the third is the stage of active rock fracturing or its 

“ruining” destruction. 

Four mechanical characteristics of each lithotype are 

used for calculation of the massif’s SSS: simple com-

pression strength of undisturbed rock, residual rock com-

pression strength (at the stage of “ruining” destruction), 

the module of rock deformation and its module of decay. 

If interaction with any bolting system of mine working is 

investigated, bolting elements materials behavior is also 

modeled according to the complete diagram of defor-

mation in order to receive more adequate results; for 

instance, behavior of steel frame support is described 

taking into account the yield point and the subsequent 

stage of hardening. It is quite obvious that while model-

ing the layered massif including a set of lithotypes with 

significantly different mechanical properties and reflect-

ing parameters of bolting system, the statement of the 

geomechanical task is extremely difficult, and the neces-

sity to solve it should be thoroughly substantiated. 

The physical model of materials (including rock) de-

formation complete diagram has been used in studying 

SSS of poor rocks layered massif around in-seam work-

ing for the purpose of reseach into the mechanism of 

rock pressure manifestations development and major 

factors defining them. A series of multi-variant calcula-

tions of SSS in the system “massif – support” has been 

carried out. One fragment of these calculations is given 

in Figure 8, which presents two diagrams of stresses 

intensity  for the same structure of the massif, but at 

different depths of mine working arrangement. Since the 

reflection of complete diagrams of rock and bolting ma-

terials deformation incorporates step-by-step calculation 

of final elements grid, the depth Н  of mine working 

location smoothly changes within the set range and al-

lows to define rather accurately conditions of the nearby 

massif (or certain areas) transition into limit and out-of-

limit stages of deformation. 

The research established that the main factors defin-

ing formation of SSS in the system “massif – support” 

are the ratios of mechanical characteristics of lithotypes 

and the depth of mine working placement which deter-

mines initial geostatic pressure in the undisturbed massif. 

This can be confirmed by diagrams   in Figure 8: at the 

depth of m200Н  mainly elastic condition practically 

of all elements of the system “massif – support” takes 

place; with transition to the depth of m600Н , rocks 

of immediate roof and bottom are not only in the limit, 

but mostly in out-of-limit state. Here the movements of 

mine working rock contour are so big (to 2.8 m in the 

roof and to 1.8 m in the bottom) that the rock practically 

fills all the cavity of a mine working; which is explained 

by the process of fracturing of a considerable volume of 

the massif in the vicinity of the roadway. 

It is revealed that when out-of-limit state sets in at 

least one of nearby rock layers, the gradient of displace-

ments growth of a rock contour repeatedly increases and 

this process becomes a cause of disturbance of opera-

tional conditions of mine working.  
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(а) 

 

(b) 

 

Figure 8. Diagrams of stresses σ intensity distribution in foliated massif of poor rocks around in-seam mine working at the depths 

of 200 m (a) and 600 m (b) 

The established phenomenon of “boost” in dis-

placements of rock contour is caused by some boundary 

ratios of strength and deformation characteristics of 

nearby rock layers, as well as mine working placement 

depth which demands conducting of special research on 

their definition within physical model with reflection of 

the complete diagram of “massif – support” system 

elements deformation.  

A number of the thought-provoking results were  

received during the conducted research. 

Firstly, various combinations of strength and defor-

mation characteristics distribution in each of nearby rock 

layers cause different extent of their influence on chang-

es of stresses fields and displacements with growth of 

mine working placement depth. The defining factor is the 

condition type of nearby rock layers at the concrete size 

of parameter H : prelimit, limit and out-of-limit. 

Secondly, the relation of SSS components of the mas-

sif to parameter H  becomes nonlinear with setting out 

of a limit state at least of one of rock layers, and in out-

of-limit state intensity of displacement growth of the 

rock contour of a mine working increases manifold, 

while intensity of stresses – decreases. 

Thirdly, sufficient independence of a rock layer 

stresses field from the condition of neighboring layers 

is revealed: 

– layers of lowered hardness with the growth of H  

pass into a limit (out-of-limit) state practically irrespec-

tively of strength characteristics of the neighboring hard-

er lithotypes; 

– stresses field in harder rock layers hradly depends 

upon transition of the next layer to a limit state. 

Fourthly, SSS of the frame support and regularities of 

its change with the increase in mine working position 

depth are in close connection with strength and defor-

mation characteristics of the nearby rock layers, but are 

nonlinear, especially, upon transition of layers to limit 

and out-of-limit states. For instance, attenuation of func-

tion  Н growth is caused by emergence and increase 

in the zones of plastic deformations in metal frame sup-

port; this process steadily begins in the lower part of the 

frame props (they are bent into the working cavity) and 

extends with the growth of H  almost along all the frame 

contour (except local areas of prelimit state in the dome). 

Formation of the system of “plastic joints” along the 

contour of the frame support promotes (in some cases) 

the development of its deformations which exclude the 

possibility of mine working further operation. 

Thus, we have revealed the effect of the “avalanche-

type” growth of displacement typical of rock contour of 

in-seam mine working placed in layered massif of small 

hardness rocks; it is conditioned by appearance of cer-

tain boundary ratios of geomechanical parameters which 

cardinally changes SSS of the massif and mechanism of 

rock pressure manifestations development. 

One more important section in problems of geome-

chanics concerns dealing with rheological properties of 

rocks which are the defining development factor in time 

of processes of massif displacement around mine work-

ings of different function. 

Studying change regularities of SSS of coal-bearing 

massif in time of a stoping face break which periodically 

occurs for the technological reasons and owing to emer-

gencies is of practical interest. During the mine instru-

mental monitoring, we established some time regularities 

of displacements development of a rock contour of the 

extraction roadway interfaced to a longwall, and the 

growth of load on mechanized support sections in stop-

ing face during the period of its stoppage. The rheologi-

cal model reflecting an extended site of conjugation of 

longwall with extraction roadway in space has been con-

structed for generalization of these discretely received 

experimental regularities and studying of behavior of 

massif’s extensive area in and around stoping operations 

conducting. The rheological model of rock behavior is 

constructed on the basis of ANSYS software which al-
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lowed to obtain values of unknown coefficients of the 

creeping equation by means of approximation of real 

diagrams of modeled lithologic differences creeping. 

The example of geomechanical processes develop-

ment in time is shown on diagram of full displacements 

(Fig. 9) for three discrete values of longwall downtime: 

h0t , h12t  and h24t . 

 

(а) 

 

(b) 

 

(c) 

 

Figure 9. Diagrams of full displacements U in coal-bearing 

massif near conjugation of longwall with extraction 

roadway: (a) longwall stopping time t = 0 h; 

(b) longwall downtime t =12 h; (c) longwall down-

time t =24 h 

Diagrams of full displacements are characterized by 

the following features during longwall stoppage  h0t : 

in abutment pressure zone ahead the longwall, field U  is 

uniform, the size of displacements is equal to only  

70 – 150 mm. The greatest movements are recorded in 

the roof over the worked-out area: here on the planes YX  

and YZ  there is also a gradual growth of U  to values  

of 460 – 660 mm at a distance to 28 m from the face and 

to 19 m from the extraction roadway. These coordinates, 

taking into account the extracted thickness of the layer 

and fracturing of collapsed rocks of the immediate roof 

are characterized by interlocking of falling rocks of the 

main roof and uncontrolled collapse zones. Here it is 

necessary to pay attention not only to qualitative, but also 

to quantitative compliance of the extent of above-the-coal 

strata lowering in worked-out area with the existing theo-

ries of rock pressure. 

The longwall stoppage for up to 24 h very signifi-

cantly influences the development of full displacements 

in majority of areas of the studied object (Fig. 9b, c). 

Lowering of roof rock layers increases moderately – to 

150 – 230 mm in abutment pressure zone ahead of stoping 

face. Lowering of roof layers over longwall is much more 

intensive: displacements U increase from 230 – 310 mm 

at the wall face, to 540 – 690 mm around the protection 

sections of mechanized support; while during further 

removal from the face, roof lowering increases to 1 m. 

Thus, rheological phenomenon which is called creep-

ing deformation actively proceeds during longwall stop-

page; it negatively affects the condition of mechanized 

support sections, creating the danger of the mechanized 

complex landing onto the “rigid base”. 

Creeping of massif deformations actively develops 

also nearby the extraction roadway, especially, in  

its roof. Here at h24t , displacements increase to 

620 – 800 mm which already creates a threat to stability 

of mine working and problems with its operation. 

Growth of displacements is less intensive in sides of the 

roadway, nevertheless, they reach 540 – 620 mm. 

In general, an unambiguous conclusion about essen-

tial danger (in given mine-and-geological conditions) for 

stability of the extraction roadway and stoping face of 

development process of creeping deformations of coal-

bearing strata follows from the analysis of full displace-

ments diagrams during stoppage of stoping face lasting 

for more than 12 h. 

Following the results of SSS research of the rheologi-

cal model under study, it is possible to draw a number of 

conclusions about geomechanical displacement processes 

of coal-bearing massif nearby extraction roadway and 

end section of longwall, as well as regularities of time 

influence of its downtime on stress components changing 

and displacement: 

– vertical stresses у  in anomalous zones are closely 

related to a longwall downtime t  expressed in relaxation 

of concentrations of compressing у  and reduction in 

the absolute value of stretching у  which on the whole 

plays a positive role; 

– horizontal stresses х  and z  also show ambigu-

ous tendencies of relation to time t : the ill-defined  

relaxation of stresses is observed in some areas of the 

model; there is a growth of functions  tx  and  tz  in 

other areas; components х  and z  have also no essen-

tial relation with a longwall downtime t  in third areas; 

– intensity of stresses   is considerably changing in 

time t , but with opposite tendencies for different types 

of rocks: for harder and more rigid layers of sandstone, 

increasing of  in time t  is observed; relaxation of   

actively develops for weaker and easy-deformed silt-

stones and mudstones; 

– the intensive weakening of roof rocks takes place 

ahead the longwall at a distance to 6 – 8 m, which limits 
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passage of rock consoles behind mechanized support and 

partially reduces negative effect of the main roof landing; 

– rheological process of creeping deformations which 

is dangerous in respect to the landing of mechanized 

support sections on the “rigid base” and difficulties of  

extraction roadway operation is most brightly shown. 

Main conclusion: influence of rheological processes 

of creeping deformations and stresses relaxation in exten-

sive area of the massif containing end section of stoping 

face and conjugated extraction roadway is considered; 

regularities of displacements development of above-the-

coal strata stoping face stoppage are generalized. 

4. CONCLUSIONS 

Three groups of numerical solution peculiarities  

related to geomechanics problems whose reflection in 

calculation models determines the level of adequacy of 

the results received during computing experiment are 

established and substantiated. 

It is proved that massif’s stratification in calculation 

model differently influences separate components of 

stresses, and rock pressure cannot be considered as the 

function directly proportional to the pillar weight of 

rocks above mine working. Degree of the received results 

adequacy is directly connected with reasonable choice of 

a contact type on the beddings planes of adjacent litho-

logic differences: rigid contact, contact with slipping, 

contact with friction force. It is established that applica-

tion of this or that type of contact leads to essential quali-

tative and quantitative changes of massif’s SSS compo-

nents distribution. 

It is revealed that in geomechanical models which 

consider massif’s fracturing at the macrolevel (geomet-

rical clusters of cracks systems), the distribution pattern 

of SSS components essentially changes, and the main 

difficulty consists in ensuring appropriate stability of 

computing process. For this purpose, it is offered to  

divide models according to the degree of their complexi-

ty on macro – and microlevels in order to receive guaran-

teed reliable results. 

It is established that degree of reliability of geome-

chanical processes reflection considerably depends upon 

the reasonable choice of physical model behavior of rock 

and materials of bolting constructions. It is proved that in 

the conditions of the predicted appearance of extensive 

zones of inelastic condition of rock, distinctions in  

parameters of rock pressure anomalies are estimated in 

hundreds of percent during comparison of task solution 

results in elastic and elastic-plastic statements; these 

differences directly affect the SSS of bolting construction 

and the choice of its rational parameters. 

Degree of adequacy and reliability of computing  

experiment results essentially depends on objectivity of 

these processes reflection during probable development 

of weakening processes and destruction of lithotypes 

around mine working. Here it is expedient to use the 

physical model describing complete diagram of rock 

deformation. It is this model that for the first time  

allowed to establish the phenomenon of “boost” in shifts 

of rock contour of mine working caused by some bound-

ary ratios of strength and deformation characteristics of 

nearby layers and also development of depth placement. 

The new step in consideration of geomechanical pro-

cesses development in time is taken during usage of 

rheological rock model behavior, because only it allowed 

to reveal and study regularities of displacement of above-

the-coal strata around conjugation of stoping face and 

extraction roadway during emergency stoppage of 

longwall. Rheological process of creeping deformations 

is shown to form dangerous prerequisites of the landing 

of mechanized support sections of stoping face on the 

“rigid base” and exit from an operational condition of 

extraction roadway is shown. 

It is established that complication of geomechanical 

behavior model of a massif is accompanied by decrease 

in stability of computing process. Therefore, during 

computing experiment, it is necessary to look for a com-

promise between aspiration of the most adequate reflec-

tion of a condition of the concrete massif of rocks (in-

cluding system of mine working’s bolting) and a main 

objective of a solvable task of establishing these or those 

regularities of rock pressure manifestations. 
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ABSTRACT (IN UKRAINIAN) 

Мета. Узагальнення досвіду чисельного моделювання методом скінченних елементів геомеханічних проце-

сів навколо гірничих виробок і формування рекомендацій з обґрунтування адекватної будови й поведінки фізи-

чної моделі гірського масиву. 

Методика. Для розв’язання задач геомеханіки використані пакети прикладних програм Solidworks 

Simulation (COSMOS/М) і ANSYS. 

Результати. Наведено розв’язання геомеханічних задач з актуальних питань оцінки НДС гірського масиву 

навколо підземних виробок різного призначення. Отримано закономірності поведінки гірського масиву й нада-

но рекомендації з адекватного й достовірного відображення його текстурних особливостей (шаруватість і трі-

щинуватість) та фізичної моделі стану гірської породи (пружна, пружно-пластична, реологічна, повна діаграма 

деформування з урахуванням знеміцнення і розпушення). 

Наукова новизна. Отримано низку нових закономірностей розвитку процесів зрушення вуглевміщуючого 

масиву навколо гірничих виробок з урахуванням його шаруватості й тріщинуватості, граничного й позамежно-

го станів в окремих областях, а також впливу реологічних властивостей гірських порід. 

Практична значимість. Комплекс розв’язань геомеханічних задач дозволяє підвищити вірогідність прогно-

зу проявів гірського тиску й обґрунтувати технічні розв’язання з ефективного й безпечного ведення гірничих 

робіт на вугільних шахтах. 

Ключові слова: гірський масив, підземна виробка, метод скінченних елементів, напруження, деформації, 

шаруватість, тріщинуватість, фізична модель, гірський тиск 

ABSTRACT (IN RUSSIAN) 

Цель. Обобщение опыта численного моделирования методом конечных элементов геомеханических про-

цессов вокруг горных выработок и формирование рекомендаций по обоснованию адекватного строения и пове-

дения физической модели горного массива. 

Методика. Для решения задач геомеханики использованы пакеты прикладных программ SolidWorks 

Simulation (COSMOS/М) и ANSYS. 

Результаты. Приведены решения геомеханических задач по актуальным вопросам оценки НДС горного 

массива вокруг подземных выработок различного назначения. Получены закономерности поведения горного 

массива и даны рекомендации по адекватному и достоверному отражению его текстурных особенностей (слои-

стость и трещиноватость) и физической модели состояния горной породы (упругая, упруго-пластическая, рео-

логическая, полная диаграмма деформирования с учетом разупрочнения и разрыхления). 

Научная новизна. Получен ряд новых закономерностей развития процессов сдвижения углевмещающего 

массива вокруг горных выработок с учетом его слоистости и трещиноватости, предельного и запредельного 

состояния в отдельных областях, а также влияния реологических свойств горных пород. 

Практическая значимость. Комплекс решений геомеханических задач позволяет повысить достоверность 

прогноза проявлений горного давления и обосновать технические решения по эффективному и безопасному 

ведению горных работ на угольных шахтах. 

Ключевые слова: горный массив, подземная выработка, метод конечных элементов, напряжения, дефор-

мации, слоистость, трещиноватость, физическая модель, горное давление 
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